UNIT 12:

LINE BISECTORS & ANGLE BISECTORS

Definition:

a) If C is a point on \overline{AB} , such that $\overline{mAC} = \overline{mBC}$, then C is said to be the midpoints of \overline{AB} .

- b) Any line through C (midpoint of AB) is called the bisector of \overline{AB} i.e. KL is the bisector of \overline{AB} .
- c) If a bisector of a line segment is perpendicular to the line segment as well, then it is said to be 'right-bisector'. In the figure LC is the right bisector of \overline{AB} because it passes through its midpoint C and is also perpendicular to \overline{AB} .

d) If a point D exists in the interior of an angle ABC, such that $m\angle ABD = m\angle DBC$ then BD is called the bisector of angle ABC.

e) Distance of a point from a line is the length of perpendicular drawn from the point to the line. Distance of P from \overline{AB} is \overline{mPQ} , where $\overline{PQ} \perp \overline{AB}$.

THEOREM 12.1

Any point on the right bisector of a line segment is equidistant from end points of the segment.

<u>Given</u>: A line MN intersects the line segment AB at the point R such that MN is the right bisector of \overline{AB} which cuts \overline{AB} at R. Let P be a point on MN.

Construction:

Join P to points A and B.

To Prove: P is equidistant from A and B i.e. mPA = mPB

Proof:

Statements	Reasons
In $\Delta PRA \longleftrightarrow \Delta PRB$ $\frac{\overline{PR} \cong \overline{PR}}{\overline{AR} = \overline{BR}}$ $\angle 1 \cong \angle 2$	Common Given Right angles
$\therefore \Delta PRA \cong \Delta PRB$ Hence $\overline{PA} \cong \overline{PB}$	(S.A.S \cong S.A.S) Corresponding sides of congruent triangles
This means that P is equidistant from A and B .	

EXAMPLE (

BD is the perpendicular bisector of AC. Find AD.

Solution:

$$AD = CD$$

perpendicular bisector theorem

$$5x = 3x + 14$$

substitute.

$$x = 7$$

solve for x

$$AD = 5x$$

THEOREM 12.2

Any point equidistant from the end points of a line segment is on the right bisector

Given: P is equidistant from the end points of \overline{AB} i.e. $\overline{PA} \cong \overline{PB}$

To Prove:

P lies on the right bisector of \overline{AB} .

P lies on the right bisector of PR

Construction:

Draw a perpendicular on \overline{AB} , meeting \overline{AB} at R.

	Statements	Reasons
In	$\Delta PRA \longleftrightarrow \Delta PRB$	
	$\overrightarrow{PA} \cong \overrightarrow{PB}$	Given
	$\overline{PR} \cong \overline{PR}$	Common
	$m \angle 1 \cong m \angle 2 = 90^{\circ}$	Construction
	$\Delta PRA \cong \Delta PRB$	$(S.A.S \cong S.A.S)$
Heno	$\overrightarrow{PR} \cong \overline{PR}$	Corresponding sides of congruent triangle
P	R is the right bisector of \overline{AB} or	240

THEOREM 12.3

Statement: The right bisectors of the sides of a triangle are concurrent.

Given: In $\triangle ABC$, DO and EO are the right bisectors of AB and BC respectively and intersects each other at O. Join O to F which is midpoint of AC.

To Prove: The right bisectors of the sides \overline{AB} , \overline{BC} , \overline{AC} of a triangle are concurrent at O.

Construction: Draw the right bisectors of \overline{AB} and \overline{BC} which intersect at O. Join O to A, B, C.

Proof:

5,327	Statements	Reasons
In	ΔAOB	

O lies on the right bisector of \overline{AB}

 $\overline{AO} \cong \overline{BO} \longrightarrow (1)$

Similarly in $\triangle BOC$

$$\overline{BO} \cong \overline{CO} \longrightarrow (2)$$

Hence $\overline{AO} \cong \overline{CO}$

Or O is on the right bisector of \overline{AC} . Hence the right bisectors of three sides of a triangle are concurrent at point O.

Given

O is on right bisector of \overline{AB}

From (1) and (2)

O is equidistant from A and C

THEOREM 12.4

Statement: Any point on the bisector of an angle is equidistant from its arms.

Given: \overrightarrow{OM} is the bisector of $\angle AOB$.

P is any point on \overrightarrow{OM} .

To Prove:

P is equidistant from the arms of $\angle AOB$ i.e. $\overline{PR} \cong \overline{PQ}$

Draw $\overline{PR} \perp \overline{OA}$ and $\overline{PQ} \perp \overline{OB}$.

Proof:

	Statement	Reasons	k
In	$\Delta PRO \longleftrightarrow \Delta POQ$	GLZ 4U.CO	Ī
	$\angle POR \cong \angle POQ$	Given	
	$\angle PQO \cong \angle PRO$	Right angles	
	$\overline{PO} \cong \overline{PO}$	Common	

 $\therefore \quad \Delta PRO \cong \Delta POQ$ Hence $\overline{PR} \cong \overline{PQ}$ (A.A.S \cong A.A.S)
Corresponding si

i.e. P is equidistant from \overrightarrow{BA} and \overrightarrow{BC} .

Corresponding sides of congruent triangles

THEOREM 12.5

Statement: Any point inside an angle, equidistant from its arms, is on its bisector.

Given: P is a point lies inside $\angle AOB$,

Such that $\overline{PR} \cong \overline{PQ}$ where $\overline{PR} \perp \overline{OA}$ and $\overline{PQ} \perp \overline{OB}$

<u>To Prove</u>: \overline{OP} lies on the bisector of $\angle AOB$

Construction:

Joint P to O. Draw perpendicular \overline{PR} and \overline{PQ} on \overline{OA} and \overline{OB} .

......

-					
P	3"	11	1	ŧ	
		٠,	٠,	•	٠

	Statements	Reasons
In	$\triangle OPR \longleftrightarrow \triangle OPQ$	
	$\overline{PO} \equiv \overline{PO}$	Common
	$\overline{PR} = \overline{PQ}$	Given
	$\angle PRO \cong \angle PQO$	Right angles
	$\triangle OPR \cong \triangle OPQ$	(S.A.S = S.A.S)
Hen	ee ∠POR≅∠POQ	Corresponding angles of the congruent triangle
Or d	\overline{OP} is the bisector of $\angle AOB$	

EXAMPLE

For what values of x does P lies on the bisector of $\angle A$?

Solution:

From the converse of the angle bisector theorem P lies on the bisector of ZA if P is equidistant from the sides of ZA, so when BP - CP.

BP = CP

set segment lengths equal

x + 3 = 2x - 1

substitute expressions for segments lengths

4 = x

solve for v

Thus the point P lies on the bisector of $\triangle A$ when x = 4.

An angle bisector of a triangle is the bisector of the interior angle of the triangle.

THEOREM 12.6

Statement: The bisectors of the angles of a triangle are concurrent.

Given: \overline{BD} and \overline{CD} are the bisectors of $\angle B$

And $\angle C$ of $\triangle ABC$, which intersects each other at D.

Join D with A.

To Prove: DA is bisector of $\angle A$.

Construction:

From D, draw $\overline{DK} \perp \overline{BC}$. $\overline{DL} \perp \overline{CA}$ and $\overline{DM} \perp \overline{AB}$.

\ Statements	· Reasons
As D lies on bisector of $\angle B$	Given
$DK \equiv \overline{DM} \longrightarrow (1)$	Distance of D from the arm of $\angle B$
Similarly D lies on the bisector of $\angle C$	(4)
$\therefore \overline{DK} \stackrel{\wedge}{=} \overline{DL} \longrightarrow (2)$	Distance of D from the arms of $\angle C$
Hence $\overline{DL} \cong \overline{DM}$	From (1) and (2)
i.e. D lies on the bisector of z . A	D is equidistant from Γ and M
Or \overrightarrow{AD} is the bisector of AA	
Or the bisectors of the angles of the	
<i>\ABC</i> are concurrent.	

Definition:

The point of concurrency of the three angle bisectors of a triangle is called the "Incentre" of the triangle. The "Incentre" always lies inside of the triangle. The "Incentre" is equidistant from the three sides of the triangle.

EXERCISE 12.1

Q1: If the diagonals of a quadrilateral are the right bisectors of each other, then prove that all the sides of the quadrilateral are congruent.

Given: ABCD is a quadrilateral. AC

And BD are the two diagonals meet at O

Such that $\overline{OA} = \overline{OC} = \overline{OB} = \overline{OD}$

 $m \angle 1 = m \angle 2 = m \angle 3 = m \angle 4$

To Prove: $\overline{AB} \cong \overline{BC} \cong \overline{CD} \cong \overline{AD}$

Proof:

	Statements	Reasons
ln	$\Delta BOC \longleftrightarrow \Delta DOC$	5
	$\overline{OC} \cong \overline{OC}$	Common
	$\overline{OB} \cong \overline{OD}$	Given
	$m\angle 2 \cong m\angle 3$	Given
∴ So	$\Delta BOC \cong \Delta DOC$	(S.A.S≅ S.A.S)
So	$\overline{BC} \cong \overline{CD}$	Corresponding sides of congruent triangles
Simi	larly we can prove that	
	$\overline{CD} = \overline{DA}$ and $\overline{DA} = \overline{AB}$	

Q2: If \overline{PR} and \overline{TS} are $\bot \overline{RS}, \overline{PM} \cong \overline{MT}$ and $m\angle PMT = 90^{\circ}$. Prove that $\triangle PRM \cong \triangle MTS$.

Given:

 $\overline{PM} \cong \overline{MT}$

 $m\angle 1 = m\angle 2 = 90^{\circ}$

 $RM \cong \overline{MS}$

To Prove:

 $\Delta PRM \cong \Delta MTS$

Proof:

1	Statements	Reasons	
In	$\Delta PRM \longleftrightarrow \Delta MTS$		
	$\overline{PM} \cong \overline{MT}$	Given	
	$m_1 = m \angle 2$	Each is 90° (Given)	
	$\overline{RM} \cong \overline{MS}$	Given	14
	$\Delta PRM \cong \Delta MTS$	$S.A.S \cong S.A.S$	

Q3: If $\angle 3 \cong \angle 4$ and \overline{QM} bisectors $\angle PQR$, prove that M is the midpoint of \overline{PR} .

Given:

 $\angle 3 \cong \angle 4$, QM bisectors $\angle PQR$

Such that $\angle 1 \cong \angle 2$

To Prove:

 $\overline{PM} \cong \overline{MR}$ or M is the midpoint of \overline{PR} .

Proof:

	Statements	Reasons
In	$\Delta PMQ \longleftrightarrow \Delta MQR$	22.
	$m \angle 1 \cong m \angle 2$	Given
•	$m \angle 3 \cong m \angle 4$	Given
	$\overline{MQ} \cong \overline{MQ}$	Common
	$\Delta PMQ \cong \Delta MQR$	(A.A.S≅ A.A.S)
Hen	ce $\overline{PM} \cong \overline{MR}$	Corresponding sides

Q4: Find the length of AB.

Solution:

From the figure, $\triangle ABD \cong \triangle BDC$ and both are right triangles.

So
$$\overline{AB} \cong \overline{BC} = \text{hypotenuse}$$

Now
$$(AB)^2 = (BC)^2 \Rightarrow (5x)^2 = (4x+3)^2$$

$$25x^2 = 16x^2 + 24x + 9$$

OR
$$25x^2 - 16x^2 - 24x - 9 = 0$$
 $\Rightarrow 9x^2 - 24x - 9 = 0$

$$3(3x^2 - 8x - 3) = 0$$

$$\Rightarrow 3x^2 - 8x - 3 = 0$$

$$\Rightarrow 3x^2 - 9x + x - 3 = 0$$

$$\Rightarrow 3x(x-3)+1(x-3)=0$$

$$(x-3)(3x+1) = 0$$

$$\therefore x - 3 = 0 \Rightarrow x = 3$$

Now length of $\overline{AB} = 5x = 5(3) = 15$ Ans

Q5: In the diagram, \overrightarrow{BD} is the perpendicular bisector of \overrightarrow{AC} .

- i) What segment lengths are equal?
- ii) What is the value of x?
- iii) Find AB.

Solution:

In
$$\triangle ABD \longleftrightarrow \triangle BDC$$

$$\overline{AD} = \overline{DC}$$

 $\therefore \overline{BD}$ is perpendicular bisector of \overline{AC}

So
$$\overline{AB} = \overline{BC}$$
 (Each is hypotenuse of same triangles)

Now
$$\overline{AD} = \overline{DC} \Rightarrow 7x - 15 = 20$$

$$\Rightarrow 7x = 20 + 15 = 35$$

$$\Rightarrow x = \frac{35}{7} = 5$$

- i) Here $\overline{AB} = \overline{BC}$ are equal segment
- ii) x=5
- iii) $\overline{AB} = 6x 5 = 6(5) 5 = 30 5 = 25$ Ans.

Q6: Can we conclude that \overrightarrow{EH} bisects $\angle FEG$?

Solution:

i) No, we cannot conclude that \overline{EH} is the bisector of $\angle FEG$ because $\angle FHE = 90^{\circ}$ but $\angle GHE \neq 90^{\circ}$

iii) No, here again \overline{EH} is not the bisector of $\angle FEG$.

Q7: Find the values of x:

Solution:

i) Since $\angle B = \angle D = 90^{\circ}$ So $\overline{DC} = \overline{BC} \Rightarrow 3x + 1 = x + 11$ $\Rightarrow 3x - x = 11 - 1$ $\Rightarrow 2x = 10 \Rightarrow x = 5$

iii) Here 7x = 3x + 16 7x - 3x = 16 $4x = 16 \implies x = \frac{16}{4} = 2$

Q8: Prove that the diagonals of a square are the right bisectors of each other.

Given:

ABCD is a square

in which \overline{AC} and \overline{BD} are diagonals.

To Prove:

 \overline{AC} and \overline{BD} are the right bisectors.

Proof:

	Statement	Reasons
In	$\triangle ABD$, $\angle 1 \cong \angle 4$	Angle opposite congruent sides
	∠2 ≅ ∠4	Alternate angles
:.	∠1 ≅ ∠2	~O,
In	$\triangle AEB \longleftrightarrow \triangle BEC$	
	$\overline{AB} \cong \overline{BC}$	All sides of square are equal
	$\overline{BE} \cong \overline{BE}$	Common .
	∠1≅∠2	Proved
	$\triangle AEB \cong \triangle BEC$	(S.A.S)
Henc	$e \overline{AE} \cong \overline{EC}$	Corresponding sides
	$\angle BEA + \angle BEC = 180^{\circ}$	Supplementary angles
*0	$\angle B\dot{E}A \cong \angle BEC = 90^{\circ}$	
Henc	$e \overline{AB} \perp \overline{BD}$ and $\overline{CE} \perp \overline{BD}$.	

REVIEW EXERCISE 12 Q1: Select the correct answer and write the corresponding letter a, b, c or d in the box. . i) Which of the following are concurrent? (a) Angles bisectors of a triangle (b) Perpendicular bisectors of the sides of a triangle / (d) All of these (c) Medians of a triangle ii) Which of the following sometimes is inside a triangle, sometimes coincides with a side of a triangle, and sometimes falls outside of a triangle? (a) The base ✓ (b) The altitude (c) The median (d) The angle bisector iii) Perpendicular bisectors of a triangle are: (a) Congruent ✓ (b) Concurrent (c) Parallel to each other (d) Perpendicular to each other iv) In which triangle the perpendicular bisector of the base passes through its vertex angle? (a) Right angled ✓ (c) Isosceles v) In ΔABC, medians AD, BE, and CF intersect at G. If CF = 24, what is the length of FG? √(a) 8 (b) 12 (d) 16 (c) 10 vi) The angle bisectors of a triangle meet at a point which is equidistant from..... of the triangle. (a) The vertices √ (b) The sides (c) Midpoints of the sides (d) All of these vii) In an equilateral triangle, all the perpendicular bisector are: √ (b) Concurrent (a) Congruent (c) The angle bisector as well (d) Parallel iii) Point of intersection of the angle bisectors of a triangle is equidistant from..... of the triangle. (a) The vertices √(b) The sides (c) Midpoints of the sides (d) All of the above

Q2: Prove that if both pairs of opposite sides of a quadrilateral are congruent, then the in the given figure $\overline{AB} \cong \overline{AD}$ and $\overline{BC} \cong \overline{BC}$. Prove that $\overline{AC} \perp \overline{BD}$ and $\overline{BE} \cong \overline{DE}$. y are also parallel.

Solution:

Given $\overline{AB} \cong \overline{AD}$

And $\overline{BC} \cong \overline{DC}$

To Prove:

- i) $\overline{BE} \equiv \overline{DE}$
- ii) $\overline{AC} \perp \overline{BD}$

Proof:

1001.		
	Statement	Reasons
In	$\triangle ABE \longleftrightarrow \triangle ADE$	
	$\overline{AB} \cong \overline{AD}$	Given
	$\overline{AE} \cong \overline{AE}$	Common
	$m\angle AEB \cong m\angle AED$	Opposite angles of \overline{AB} and \overline{AD}
	$\triangle ABE \cong \triangle ADE$	S.A.S
Hence	$\overline{BE} \cong \overline{DE}$	Corresponding sides of congruent triangles
But	$m\angle AEB \cong m\angle AED$	Corresponding sides of congruent triangles
	<i>m</i> ∠3 ≅ <i>m</i> ∠4	
But	$m \angle 3 + m \angle 4 = 180^{\circ}$	Supplementary angles
Hence	$m \angle 3 = m \angle 4 = 90^{\circ}$	
7	\overline{AC} is perpendicular to \overline{BD}	

Q3: Prove that the diagonals of a rhombus are the right bisectors of each other.

Solution:

Given \overline{AC} and \overline{BC} are the diagonals of rhombus ABCD.

To Prove: \overline{AC} and \overline{BD} bisect each other at right angles.

Proof:

10	Statement	Reasons		
In	$\triangle ABC \longleftrightarrow \triangle BAD$	7		
	$\overline{AB} \cong \overline{AB}$	Common		
$m\angle ABC \cong \angle BAD$		Each is of opposite side of rhombus		
	$BC \cong AD$	S.A.S		
*	$\Delta ABC \cong \Delta BAD$			
	$\overline{AC} \cong \overline{BD}$	Corresponding sides of congruent triangles		
	$\overline{AB} \cong \overline{BC}$			

Q4: Prove that bisectors of the base angles of an isosceles triangle intersect each other at the right bisector of the base.

Solution:

Given in $\triangle ABC$,

 $m\angle A \cong m\angle B$

To Prove:

 \overline{OD} is the right bisector of \overline{AB} or $\overline{OD} \perp \overline{AB}$.

Proof:

	Statement	Reasons		
In	$\triangle AOD \longleftrightarrow \triangle BOD$	O is point of intersection of the bisectors of $\angle A$ and $\angle B$.		
	$\overline{AO} \cong \overline{BO}$,00		
	$m \angle 1 \cong m \angle 2$	Bisectors of two congruent angles		
•	$\Delta AOD \cong \Delta BOD$	S.A.S		
Heno	ce $m \angle 3 \cong m \angle 4$	Corresponding angles		
But	$m\angle 3 + m\angle 4 = 180^{\circ}$	Supplementary angles		
\Rightarrow	$m\angle 3 = 90^{\circ}$	Hence $OD \perp \overline{AB}$		

Additional MCQs of Unit 12: Line Bisectors and Angle Bisectors

1.				n its end points
	(a) Angle bisector ✓ Ans. (c) Right h		(c) Right bisector	(d) none
2.	The right bisectors (a) Parallel ✓ Ans. (b) Concu	of the sides of a tr (b) Concurrent	iangle are (c) Perpendicular	(d) none
3.	The bisectors of th	eof a trian (b) Sides	gle are concurrent. (c) Vertices	(d) none
4.	Bisector is a line the (a) One ✓ Ans. (b) Two	hat divides a segme (b) Two	ent intocong (c) Three	ruent parts. (d) Four
5.	The point where a (a) End point ✓ Ans. (c) Midpo	(b) Center point		of the segment. (d) none
6.	(a) Median	s perpendicular to (b) Right bisector bisector		(d) none
7.	An angle bisector (a) Sides Ans. (c) An ang	(b) Triangles	desinto two	congruent parts. (d) none
8.	A line or ray whice (a) Altitude ✓ Ans. (a) Altitude	(b) Bisector	to the side of a triang (c) Median	gle is called
9.	The point of concu (a) Centroide ✓ Ans. (b) The in	(b) The incentre		triangle is called (d) none
10.	The incentre is (a) Near ✓ Ans. (c) At diff	(b) At different di	e sides of the triangle istance (c) Equidista	