UNIT 14:

RATIO & PROPORTION

When we divide two similar quantities on each other then it is called ratio of the quantities. For example,

$$\frac{\overline{AB}}{\overline{CD}} = \overline{AB} : \overline{CD}$$
 and $\frac{\overline{CD}}{\overline{AC}} = \overline{CD} : \overline{AC}$

The quantity between the two ratios of the sides of a triangle is called proportion i.e.

$$\frac{\overline{AB}}{\overline{CD}} = \frac{\overline{CD}}{\overline{AC}}$$

This represents proportion.

If in AABC

$$\frac{mAD}{mDB} = \frac{mAE}{mEC}$$

Then $\frac{m\overline{AB}}{m\overline{DB}} = \frac{m\overline{AC}}{m\overline{EC}}$

(Componendo property)

And
$$\frac{m\overline{AD}}{m\overline{AB}} = \frac{m\overline{AE}}{m\overline{AC}}$$

(Componendo and invertendo property)

If in a correspondence $\triangle ABC \longleftrightarrow \triangle DEF$, the correspondence angles are congruent then the triangles are similar i.e. $\triangle ABC \hookrightarrow \triangle DEF$.

Correspondence in this case is called *similarity*.

A line parallel to one side of a triangle, intersecting the other two sides, divides them proportionally.

Given:

A triangle \overrightarrow{ABC} in which $\overrightarrow{KL} \parallel \overrightarrow{AB}$. \overrightarrow{KL} meets \overrightarrow{CA} and \overrightarrow{CB} at distinct points K and L respectively.

To Prove:

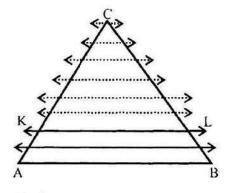
$$\frac{m\overline{CK}}{m\overline{KA}} = \frac{m\overline{CL}}{m\overline{LB}}$$

Construction:

Suppose the unit of length is taken such that $m\overline{CK} = p$ and $m\overline{KA} = q$ units (where p and q are whole numbers, $q \neq 0$)

i.e.
$$\frac{m\overline{CK}}{m\overline{KA}} = \frac{p}{q}$$

divide \overline{CK} into p congruent segments and \overline{KA} into q congruent segments. From each



dividing point, draw lines parallel to \overline{KL} .

Proof:

The parallel lines divides \overline{CA} into (p+q) congruent segments

Statement

CB is another transverse which cuts these parallel lines.

... These parallel lines divide \overline{CB} also into (p+q) congruent segments.

i.e. \overline{CL} is divided into p congruent and \overline{LB} is divided into q congruent segments.

Suppose the length of each congruent segments is 'a' unit.

$$\therefore \frac{m\overline{CL}}{m\overline{LB}} = \frac{a \times p}{a \times q}$$
Or
$$\frac{m\overline{CL}}{m\overline{LB}} = \frac{p}{q} \longrightarrow (i)$$
But
$$\frac{m\overline{CK}}{m\overline{KA}} = \frac{p}{q} \longrightarrow (ii)$$

(from (i) & (ii)

Construction

Same number of congruent segments are intercepted on any other transversal.

Reasons

Construction

t24u.com

From (i) and (ii)

THEOREM 14.2

If a line segment intersects the two sides of a triangle in the same ratio then it is parallel to the third side.

Given:

KL intersects two sides AB

And \overline{AC} of the triangle ΔABC

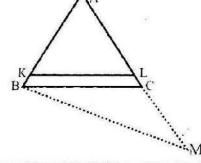
At K and L such that

$$\frac{mAK}{mKB} = \frac{mAL}{mLC}$$

To Prove:

$$\overline{KL} + \overline{BC}$$

Proof:



Statement Reasons

Suppose \overline{KL} is not parallel to \overline{BC} , then let \overline{BM} be drawn through B, parallel to \overline{KL} .

mee	ting \overrightarrow{AC} at M.
•	$\frac{m\overline{AK}}{=} = \frac{m\overline{AL}}{=} \longrightarrow (i)$
18/2	$m\overline{KB}$ $m\overline{LM}$
But	$\frac{mAK}{=} = \frac{mAL}{=} \longrightarrow (ii)$
	mKB mLC
Thu	
	mLM mLC
Or	mLM = mLC
This	s is possible if C and M coincide

Proportional segments are cut by line || to one side of the triangle.

Given

From (i) and (ii)

Denominators of equal fraction

THEOREM 14.3

The internal bisector of an angle of a triangle divides the side opposite to it in the ratio of the lengths of the sides containing the anles.

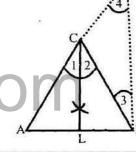
Given:

In $\triangle ABC$, \overline{CL} is the bisector of LC,

which meets the opposite side \overline{AB} at L.

To Prove:

$$\frac{m\overline{AL}}{m\overline{BL}} = \frac{m\overline{AC}}{m\overline{BC}}$$



Proof.

Statement	Reasons
LC BD	Construction
$\therefore \angle 2 \cong \angle 3 \longrightarrow (i)$	Alternate angle
And $\angle 1 \cong \angle 4 \longrightarrow (ii)$	Corresponding angles
But ∠1≅∠2	Given
∴ \∠3 ≅ ∠4	Transitive property
Hence $\overline{BC} \cong DC$	Opposite sides of congruent angles
Now in $\triangle ABD$	Construction
$\overline{CL} \parallel \overline{DB}$	
$m\overline{AL}$ $m\overline{AC}$	Proportional segments are cut by line to one
$\therefore \frac{1}{m\overline{BL}} = \frac{1}{mDC}$	side of the triangles.
$m\overline{AL} = m\overline{AC}$	
Or ${mBL} = {mBC}$	

THEOREM 14.4

If two triangles are similar, then the measures of their corresponding sides are proportional.

Given:

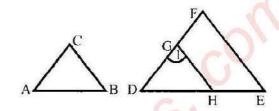
$$\Delta ABC \sim \Delta DEF$$

i.e.
$$\angle A \cong \angle D. \angle B \cong \angle E$$

And $\angle C \cong \angle F$

To Prove:

$$\frac{m\overline{AB}}{m\overline{DE}} = \frac{m\overline{BC}}{m\overline{EF}} = \frac{m\overline{AC}}{m\overline{DF}}$$



Construction:

Take point G and H on \overline{DF} and \overline{DE} such that $\overline{AC} \cong \overline{DG}$ and $\overline{AB} \cong \overline{DH}$. Join G to H.

Statement	Reasons
In $\triangle ABC \longleftrightarrow \triangle DHG \text{ GD}$	6
$\overline{AB} \cong \overline{DH}$	Construction
$\overline{AC} \cong \overline{DG}$	Construction
$\angle A \cong \angle D$	Given
∴ ΔABC≅ΔDHG	(S.A.S ≆ S.A.S)
Hence $\angle C \cong \angle 1$	Corresponding (∠) of congruent triangle
But $\angle C \cong \angle F$	Given
∴ ∠1≅ ∠F	Transitive property
But corresponding angles	
$\therefore \overline{GH} \parallel \overline{FE}$	
Hence $\frac{m\overline{DG}}{\overline{DB}} = \frac{m\overline{OH}}{\overline{DB}}$	Remaining sides proportional
Hence $\overline{mDF} = \overline{mDE}$	
$m\overline{AC}$ $m\overline{AB}$	$\therefore \overline{AC} \cong DG$ and $\overline{AB} = \overline{DH}$
Or $\frac{m\overline{NS}}{m\overline{DF}} = \frac{m\overline{NS}}{m\overline{DE}} \longrightarrow (i)$	
Similarly it can be proved that	
$m\overline{AC}$ $m\overline{BC}$	
$\frac{m\overline{DF}}{m\overline{DF}} = \frac{m\overline{DC}}{m\overline{EF}} \longrightarrow (ii)$	1
$m\overline{AB}$ $m\overline{BC}$ $m\overline{AC}$	From (i) and (ii)
Hence $\frac{mDE}{mDE} = \frac{mDC}{mEF} = \frac{mDC}{mDF}$	
	1

EXERCISE 14.1

Q1: The three angles of a triangle are in the ratio 1:2:6. What is the measure of the smallest angle?

Solution:

Let a be the smallest angle then other two angles are 2a and 6a.

$$3 \times 3a + 3a + 6a = 180^{\circ}$$

$$\Rightarrow 9a = 180^{\circ} \Rightarrow a = \frac{180^{\circ}}{9} = 20^{\circ}$$

Hence $a = 20^{\circ}$ is the smallest angle.

Q2: The measure of the three angles of a triangle are in the ratio 2:3:4. Find the measure of the largest angle of the triangle.

Solution:

Let the largest angle = 4a then other two angles are 3a and 2a

Since
$$2a + 3a + 4a = 180^{\circ}$$

$$\Rightarrow 9a = 180^{\circ} \Rightarrow a = 20^{\circ}$$

Hence measure of the largest angle is

$$4a = 4(20^{\circ}) = 80^{\circ}$$

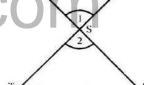
Q3: In the given figure, show that $\triangle QRS$ and $\triangle TUS$ are similar.

Solution:

To Prove:

Given ΔQRS and ΔTUS

 ΔORS and ΔTUS are similar.



Proof:

Statement	Reasons
$m\angle 1 = m\angle 2$	Vertical angles
$TU \longleftrightarrow QR$	One – one correspondence
$TS \longleftrightarrow SR$	One – one correspondence
$SU \longleftrightarrow SQ$	One – one correspondence
$m \angle U = m \angle Q$	Opposite angles
$m \angle T = m \angle R$	
Hence $\triangle QRS$ and $\triangle TUS$ are simi-	
lar triangles.	

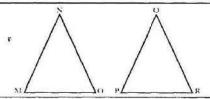
Q4: In the given figure show that $\Delta MNO \sim \Delta PQR$.

Statement	Reasons
$ \overline{MO} \longleftrightarrow \overline{PR} \\ \overline{MN} \longleftrightarrow \overline{PQ} $	Corresponding sides

$$\overline{QR} \longleftrightarrow \overline{ON}$$

$$\angle M \longleftrightarrow \angle P$$

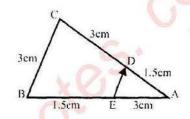
$$\angle O \longleftrightarrow \angle R$$
Hence $\triangle MNO \longleftrightarrow \triangle POR$



Q5: In $\triangle ABC$, DE is parallel to BC. If mAD = 1.5cm, mBD = 3cm, mAE = 1.3cm, then find mCE.

Solution:

Given
$$\overline{DE}$$
 is parallel to \overline{BC}
 $m\overline{AD} = 1.5cm$
 $m\overline{DC} = 3cm$
 $m\overline{BE} = 1.5cm$



Required: Length of \overline{AC}

	Statement	Reasons
	$\overline{DE} \parallel \overline{BC}$	Given
In	ΔABC	63
	$m\overline{AC} = m\overline{AB}$	
	$\overline{mDC} = \overline{mEA}$	
	$m\overline{AC}$ $m\overline{BE} + m\overline{EA}$	$\therefore m\overline{AB} = \overline{BE} + \overline{EA}$
	mDC mEA	LZ4U.COIII
	$m\overline{AC} = 1.5 + 3$	mEA = mDC = 30m
	3 3	
	$m\overline{AC} = \left(\frac{1.5+3}{\cancel{2}}\right) \times \cancel{2}$	
	$\overline{mAC} = 4.5cm$	

Q6: In the given figure, find the value of x.

Solution:

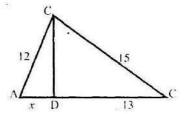
As ΔBCD is a right triangle so by Pythagoras theorem,

$$(BC)^{2} + (DC)^{2} + (BD)^{2}$$

$$(15)^{2} + (13)^{2} + (BD)^{2}$$

$$225 - 169 = (BD)^{2}$$

$$(BD)^{2} = 56$$



Now in $\triangle ABD$, again

$$(AB)^2 = (AD)^2 + (BD)^2$$

$$(12)^2 = \infty^2 + 56$$

$$144 - 56 = \infty^2 = \infty^2 = 88 \Rightarrow \sqrt{\infty^2} = \sqrt{88} \Rightarrow \boxed{\infty = 9}$$

Q7: In $\triangle ABC$, \overline{AD} is the bisector of $\angle A$. If $\overline{mAB} = 9cm$, $\overline{mAC} = 10$ cm and $\overline{mBC} = 12cm$. Find the measure of \overline{DC} and \overline{BD} .

Solution:

Given in $\triangle ABC \angle 1 \cong \angle 2$, AB = 9cm

$$\overline{AC} = 10cm$$
 and $\overline{BC} = 12cm$

To find: $\overline{DC} = ?$ and $\overline{BD} = ?$

Proof: In $\triangle ABC$, \overline{AD} is the bisector of $\angle A$.

$$\therefore \frac{\overline{BD}}{\overline{DC}} = \frac{\overline{AB}}{\overline{AC}}$$

$$\overline{BC} = 12cm$$

$$\therefore \ \frac{\overline{BD}}{\overline{DC}} = \frac{9}{10}$$

(Dividing 12cm in 9:10)

$$\frac{5.68}{6.32} = \frac{9}{10}$$

$$\overline{BD} = 5.68cm$$
 and $\overline{DC} = 6.32cm$

Q8: \overline{PS} is the bisector of $\angle P$ in $\triangle PQR$. If $m\overline{QS} = 3cm, m\overline{SR} = 7$ and $m\overline{PQ} + m\overline{PR} = 20cm$, find the measure of \overline{PQ} and \overline{PR} .

Solution:

Given in $\triangle PQR$, \overline{PS} is the bisector of $\angle P$ and $\overline{QS} = 3cm$ and $\overline{SR} = 7cm$, PQ + PR = 20cm.

To Find: PQ and PR

Proof:

In $\triangle PQR$, \overline{RS} is the bisector of $\angle P$.

Therefore
$$\frac{QS}{SR} = \frac{PQ}{PR} 3:7 = PQ:PR$$

$$\frac{3}{7} = \frac{PQ}{PR} \frac{3}{10} \times 20^2 = 6$$

$$\frac{QS}{SR} = \frac{PQ}{PR} = \frac{7}{100} \times 20^2 = 14$$

$$\frac{3}{7} = \frac{6}{14}$$
 hence $\overline{PQ} = 6cm$ and $\overline{PR} = 14cm$.

Q9: ABC is a triangle in which $m\overline{BC} = m\overline{CA} = 2m\overline{AB}$. Internal bisector of A meets \overline{BC} at D and DE is drawn parallel to \overline{CA} meeting \overline{AB} at E. Find $m\overline{DE}$: $m\overline{AB}$.

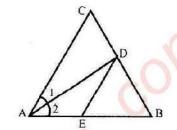
Solution:

Given: In △ABC

$$m\overline{BC} = m\overline{CA} = 2m\overline{AB}$$

 $m\angle 1 = m\angle 2$ and $\overline{DC} \parallel \overline{AC}$

To Prove: mOE: mAB



Statement	Reasons
As \overline{AD} is the internal bisector of A then,	A. DENG!
$\frac{mCD}{mDC} = \frac{mCA}{2mAB} \longrightarrow (i)$ $mCD = mAE$	As DEHCA
Also ${mOB} = {mEB} \longrightarrow (ii)$	253
From equation (i) and (ii)	
$\frac{-mCA}{=}\frac{mAE}{}$	Transitive property
2mAB mEB	twilleam
2mOF = mAE	$\therefore DC \parallel CA \Rightarrow AC = 2\overline{DE}$
2mAB mEB	
mDE prAE 1	Because E is the midpoint of AB
$m\overline{AB} - m\overline{AE} - 2$	
$\Rightarrow m\overline{DE}: m\overline{AB} = 1:1$	

Q10: Measures of the sides of a triangle are 6.5cm, 7.8cm and 9.1cm. Find the lengths of the segments into which the smallest side is divided by the internal bisector of the opposite angle.

Solution:

Given
$$AB = 6.5cm$$

$$AC = 9.1cm$$

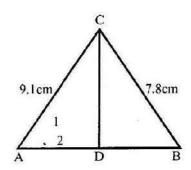
$$\overline{BC} = 7.8cm$$

We find \overline{AD} and \overline{BD}

$$\frac{m\overline{BC}}{m\overline{AC}} = \frac{m\overline{AD}}{m\overline{BD}} \longrightarrow (1)$$

Since
$$\overline{AB} = \overline{AD} + \overline{BD}$$
 or $\overline{AD} = \overline{AB} - \overline{AD} \longrightarrow (2)$

Put equation (2) in equation (1), we gets



$$\frac{m\overline{BC}}{m\overline{AC}} = \frac{m\overline{AB} - m\overline{BD}}{m\overline{BD}} = \frac{m\overline{AB}}{m\overline{BD}} - 1$$

Putting the values

$$\frac{7.8}{9.1} = \frac{6.5}{m\overline{BD}} - 1 \qquad \Rightarrow \frac{7.8}{9.1} + 1 = m\overline{BD}$$

or
$$\boxed{mBD} = 3.5cm$$
 Put this value in equation (2) $AD = \overline{AB} - \overline{BD} = 6.5 - 3.5 = 3cm$
 $AD = \overline{AB} - \overline{BD} = 6.5 - 3.5 = 3cm$

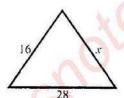
Q11: The given triangles are similar, find x.

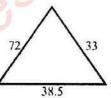
Solution:

From two similar triangle their ratio is 16: x = 22:33

$$\Rightarrow \frac{16}{x} = \frac{22}{3} \Rightarrow x = \frac{\cancel{16}^2 \times \cancel{33}^3}{\cancel{22}_{\cancel{N}_1}}$$

$$\Rightarrow x = 24$$
 Ans.





Q12: If $\triangle ABC \sim \triangle DEF$ and $\overline{mAC} = 12cm$, $\overline{mAD} = 4cm$, $\overline{mBC} = 10cm$ and $\overline{mDF} = 9cm$, then find the measure of \overline{DE} and \overline{EF} .

Solution:

$$\Delta ABC \sim \Delta DEF$$

To Find: $m\overline{DE} = ?$ and $m\overline{EF} = ?$

Proof: We know that,

$$\Delta ABC \sim \Delta DEF$$

$$\therefore \frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$$

Let
$$\frac{4}{DE} = \frac{10}{EF} = \frac{12}{9}$$
 $\Rightarrow \frac{\cancel{A}}{DE} = \frac{\cancel{\cancel{2}}^3}{\cancel{\cancel{9}}_{\cancel{\cancel{5}}}} \Rightarrow DE = 3cm$

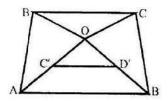
$$\frac{10}{EF} = \frac{12}{9} \frac{\cancel{10}^{3}}{EF} = \frac{\cancel{12}^{2}}{\cancel{9}} \implies EF = \frac{15}{2} \implies EF = 9.5cm$$

So DE = 3cm and EF = 7.5cm

Q13: Diagonals of a trapezoid *ABCD* intersect each other at *O*. If $\triangle AOB \sim \triangle COD$, then prove that $\overline{AB} \parallel \overline{CD}$.

Solution:

Taking
$$C'$$
 and D' on \overline{AC} and \overline{BD} diagonals such that $\overline{OC'} = \overline{OC}$ and $\overline{OD'} = \overline{OD}$



Proof:

W-016	Statement	Reasons
In	$\frac{\Delta AOB}{\overline{CD}} \sim \frac{\Delta OCD}{\overline{OC}}$ $\frac{\overline{AB}}{\overline{CD}} = \frac{\overline{OA}}{\overline{OC}} = \frac{\overline{OB}}{\overline{OD}}$	Find the property of similar triangles
	$\frac{\overline{OA}}{\overline{OC}} = \frac{\overline{OB}}{\overline{OD}}$	
	$\frac{\overline{AC'}}{C'O} + \frac{C'O}{C'O} = \frac{\overline{BD'}}{\overline{OD'}} + \frac{\overline{OD'}}{\overline{OD'}}$	
	$\frac{\overline{AC''}}{\overline{C'O}} + \cancel{X} = \frac{\overline{BD'}}{\overline{OD'}} + \cancel{X}$	Xe-
⇒	$\frac{\overline{AC'}}{C'O} = \frac{\overline{BD'}}{\overline{OD'}}$	and.
••	$C'D' \parallel \overline{AD}$ and $\overline{CD} \parallel \overline{AB}$	63.

Q14: In the accompanying figure, the line segment, \overline{KL} , is drawn parallel to \overline{ST} , intersecting \overline{RS} at K and \overline{RT} at L in RST. If PK = 5, KS = 10, and RT = 18, then find RL.

Solution:

Using ratio theorem,

$$\frac{m\overline{LR}}{m\overline{KR}} = \frac{m\overline{LT}}{m\overline{LR}}$$

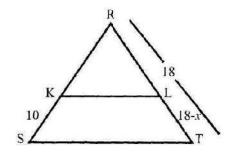
$$\frac{x}{5} = \frac{18 - x}{10}$$

$$\Rightarrow \cancel{10}^2 \times \frac{x}{\cancel{5}} = \cancel{10} \left(\frac{18 - x}{\cancel{10}} \right)$$

$$2x = 18 - x \Rightarrow 2x + x = 18$$

$$\Rightarrow 3x = 18$$

$$\Rightarrow x = 6$$



REVIEW EXERCISE 14

Q1: Select the correct answers:

- i) In the given figure compute x:
 - (a) 7
 - (b)9
 - (c) 2

√(d)3

- ii) Which of the following is not valid for proving triangles similarity?
 - (a) SSS
- (b) AA
- √(c) SSA
- (d) SAS
- iii) In a mathematics class with 32 students, the ratio of girls to boys is 5 to 3. How many more girls are there than boys?
 - (a) 2
- (b) 12
- . J(c) 8
- (d) 20
- iv) The measure of a line segment joining the midpoints of \overline{AB} and \overline{AC} of ΔABC is 3.5cm. Find $\overline{mBC} =$
 - (a) 4.5cm
- (b) 5.5cm
- (c) 6cm
- √ (d) 7cm
- v) In the figure $\overrightarrow{AB}||\overrightarrow{CD}$. If \overrightarrow{AD} and \overrightarrow{BC} intersects at O. Then $\triangle AOB$ and $\triangle DOC$

are:

- (a) Congruent √(b) Similar
- (a) Not similar
- (c) Not similar(d) None of these

Q2: Prove that a line passing through the midpoint of one side of a triangle and parallel to a second side bisects the third side of the triangle.

Solution:

Given:

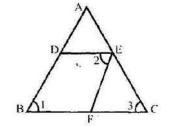
In $\triangle ABC$, $\overline{DE} \parallel \overline{BC}$ bisect \overline{AB} at point D

And \overline{AC} at point E respectively

To Prove:

$$\overline{AE} = \overline{EC}$$

Proof:



Statement	Reasons	
Since BFED is a parallelogram	Given	
$\overline{EF} \equiv \overline{BD} \equiv \overline{AD}$	Opposite sides of parallelogram alternate angles	
$m\angle 1 \cong m\angle 2$		
$m\angle 3 \cong m\angle 2$		
∴ <i>m</i> ∠1≅ <i>m</i> ∠3	Transitive property	

In
$$\triangle ADE \longleftrightarrow \triangle EFC$$

 $AD \cong EF$

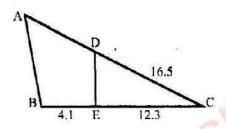
$$\Delta ADE \cong \Delta EFC$$

Hence $\overline{AE} \cong \overline{EC}$

 $m \angle 1 \cong m \angle 3$ proved $m \angle 1 \cong m \angle 2$ proved

Q3: In the figure $\overline{AB} \parallel \overline{DE}$. If $\overline{mBE} = 4.1cm$, $\overline{mEC} = 12.3cm$ and $\overline{mDC} = 16.5cm$, find the measure of \overline{AC} .

Solution:



Proof:

Statement	Reasons
$\overline{AB} \parallel \overline{DE}$	Given
In ΔABC $\frac{m\overline{AC}}{m\overline{DC}} = \frac{m\overline{BC}}{m\overline{EC}}$	As $\overrightarrow{AB} \parallel \overrightarrow{DE}$ (Given)
$\frac{m\overline{AC}}{m\overline{DC}} = \frac{m\overline{BE} + m\overline{EC}}{m\overline{EC}}$	$m\overline{BC} = m\overline{BE} + m\overline{EC}$
$\frac{m\overline{AC}}{16.5} = \frac{4.1 + 12.3}{12.3}$	Putting values
$=\frac{16.4}{12.3}$	
$m\overline{AC} = \frac{16.4 \times 16.5}{12.3} = 22 A$	Ans.

Q4: Let \overline{PQ} and \overline{RS} intersect O and $\frac{m\overline{PQ}}{m\overline{OQ}} = \frac{m\overline{RO}}{m\overline{OS}}$. Prove that $\triangle OPR \sim \triangle OQS$.

Solution:

Given: \overline{PQ} and \overline{RS} intersect each other at O

And
$$\frac{m\overline{PO}}{m\overline{OQ}} = \frac{m\overline{RO}}{m\overline{OS}}$$

To Prove:

 $\triangle OPR \sim \triangle OQS$

Proof:

Statement	Reasons
In $\triangle POS \longleftrightarrow \triangle ROQ$ $\frac{m\overline{PO}}{m\overline{OQ}} = \frac{m\overline{RO}}{m\overline{OS}}$	Given
$m \angle 1 \cong m \angle 2$	Vertical angles
$\frac{PS \parallel RQ}{mOQ} = \frac{mOR}{mOS} = \frac{mRS}{mRQ}$ ∴ ΔPOS ~ ΔROQ	ENO'Y

Perfect2***u.com

Additional MCQs of Unit 14:

Ratio and Proportion

1.	A line parallel to one side of a triangle, intersecting the other two sides divides the						
	(a) Equally ✓ Ans. (b) Propos	(b) Proportionally tionally	(c) Linearly	(d) none			
2.	If a line segmentto third side (a) Equal			in the same ratio then it is (d) none			
	✓ Ans. (c) Paralle	Ł	*	55,			
3.		If two triangles are similar then the measure of theirsides are proportional.					
	(a) Opposite ✓ Ans. (b) Corres	(b) Corresponding ponding	(c) Similar	(d) none			
4.	If area of AABC	is 18cm ² and ADE	F is $24cm^2$ then the	ne ratio between their areas			
	is						
	(a) 2:3	(b) 4:5	(c) 3:4	(d) 5:6			
	✓ Ans. (c) 3:4	w	10				
. 5.				es are said to be			
	(a) Equal (b) Proportion (c) Parallel (d) Unequal						
6.	<i>a</i> : <i>b</i> :: <i>c</i> : <i>d</i> means	that					
	(a) $\frac{a}{c} = \frac{b}{d}$	(b) $ab = cd$	(c) $\frac{a}{b} = \frac{c}{d}$	(d) none			
	\checkmark Ans. (c) $\frac{a}{b} = \frac{c}{d}$	MI.					
7.	If the corresponding angles of two triangles are congruent then the triangles are said						
	to have(a) Concurrency	(b) Similarity	(c) Proportional	(d) none			
	✓ Ans. (b) Simila		(c) Proportional	(a) none			
8.	To prove the similarity of two triangles which is impossible in the following:						
	(a) SS	(b) SSS	(c) SSA	(d) SAS			
	✓ Ans. (a) SS						
9.	In a school 40 students are admitted the ratio of boys to girls is 6 to 2 then the boys						
	are (a) 30	(b) 20	(c) 32	(d) 28			
	✓ Ans. (a) 30	(0) 20	(0) 52	(d) 20			
	· · · · · · · · · · · · · · · · · · ·	(F)					