UNIT 11:

PARALLELOGRAMS & TRIANGLES

Definition:

- A quadrilateral is a closed figure having four sides and four angles. Line joining its
 opposite vertices is called its diagonal which divides the quadrilateral into two triangles.
- b) Lines which are in the same plane and do not intersect each other, are called parallel lines
- c) If two lines lie in the same plane, they are said to be coplanar lines.
- d) Lines drawn to cut two or more given lines is called transversal.
- e) Line segment joining into midpoint of one side of a triangle to its opposite vertex is called the median of the triangle.

Alternate Angles:

When two coplanar lines \overrightarrow{AB} and \overrightarrow{CD} are cut by a transversal \overrightarrow{XY} , two pairs of alternate angles are formed. If the coplanar lines are parallel, alternate angles are congruent.

From the figure, alternate angles $\angle 1 \cong \angle 2$ and $\angle 3 \cong \angle 4$

When two lines intersect each other, the angle having a common vertex and having no common arm are called

vertical angles. In the figure the two lines \overline{AB} and \overline{CD} intersect at O. $(\angle 1, \angle 2)$ and $(\angle 3, \angle 4)$ are two pairs of vertical angles. Also $\angle 1 \cong \angle 2$ and $\angle 3 \cong \angle 4$.

THEOREM 11.1

Statement: In a parallelogram:

- i) The opposite sides are congruent
- ii) The opposite angles are congruent
- iii) .The diagonals bisect each other

Given: ABCD is a parallelogram

i.e. $\overline{AB} \parallel \overline{DC}$ and $\overline{AD} \parallel \overline{BC}$

 \overline{AC} and \overline{BD} are the diagonals of parallelogram

To Prove: $\overline{AB} \cong \overline{DC}$ and $\overline{AD} \cong \overline{BC}$

 $\angle A \cong \angle C$ and $\angle B \cong \angle D$

 $\overline{AE} \cong \overline{CE}$ and $\overline{DE} \cong \overline{BE}$

Proof:

<u>1 1001</u> .		
Statements	Reasons	
$\therefore \overline{AB} \parallel \overline{DC}$ and \overline{AC} intersects them		

 $: m \angle 1 \cong m \angle 2 \longrightarrow (1)$

Similarly $\angle 3 \cong \angle 4 \longrightarrow (2)$

In $\triangle ABC \longleftrightarrow \triangle CDA$

 $\overline{AC} \cong \overline{AC}$

 $m \angle 3 \cong m \angle 4$

 $m \angle 1 \cong m \angle 2$

 $\therefore \triangle ABC \cong \triangle CDA$

Hence $\overline{AB} \cong \overline{CD}$

And $BC \cong DA$

Also $\angle B \cong \angle D$

 $m \angle 1 + m \angle 4 \cong m \angle 2 + m \angle 3$

Or $m \angle A \cong m \angle C$

In $\triangle ABE \longleftrightarrow \triangle CDE$

 $AB \cong CD$

 $m \angle 1 \cong m \angle 2$

 $\angle AEB \cong \angle CED$

 $\triangle ABE \cong \triangle CDE$

Hence $\overline{AE} \cong \overline{CE}$

And $BE \cong DE$

Alternate angles

Alternate angles

Common

Proved already

Proved

(A.A.S)

Corresponding sides of congruent triangles

Corresponding sides of congruent triangles

Corresponding angles of congruent triangles

Adding (1) and (2)

 $\angle 1 + \angle 4 = m\angle A$ and $\angle 2 + \angle 3 = m\angle C$

Proved

Proved

Vertical angles

 $(A.A.S \cong A.A.S)$

Corresponding sides of congruent triangles

EXAMPLE (1

Quadrilateral WXYZ is a parallelogram. Find the value of x and y.

(: opposite sides of parallelogram are equal)

Solution:

XY = WZx - 9 = 15

x = 24

y = 60

(: opposite angles of a parallelogram are equal)

THEOREM 11.2

Statement: If two opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

Given: ABCD is a quadrilateral in which

 $AB \cong DC$ and $AB \cong DC$

To Prove:

ABCD is a parallelogram.

In $\triangle ABC \longleftrightarrow \triangle CDA$

Construction:

Join A to C.

Proof:

Statements	Reasons
	and it deposits a feet and the control of the contr

$\overline{AB} \cong \overline{DC}$	
$\overrightarrow{AC} \cong \overrightarrow{AC}$	
∠1≅∠2	
$\therefore \Delta ABC \cong \Delta CDA$	
Hence /3 = /4	

: AD || BC

Hence ABCD is a parallelogram.

Given

Common

Alternate angles

 $(S.A.S \cong S.A.S)$

Corresponding angles of congruent triangles

due to alternate angles

Opposite sides are parallel

THEOREM 11.3

Statement: The line segment, joining the midpoints of two sides of a triangle, is parallel to the third side and is equal to one half of its length.

Given: In $\triangle ABC$, D and E are the midpoints of

AB and AC. DE joins them.

To Prove:

$$\overline{DE} \parallel \overline{BC}$$
 and $m\overline{DE} = \frac{1}{2}m\overline{BC}$

Construction:

Takes F on DE, such that $DE \cong EF$. Join F to C.

Proof:

Statements

In $\triangle ADE \longleftrightarrow \triangle CFE$ $\overline{DE} \cong \overline{EF}$ $\overline{AE} \simeq \overline{CE}$

∠1≅∠2

 $\therefore \Delta ADE \cong \Delta CFE$

 $AD \cong \overline{CF}$

But $AD \cong BD$

So $\overline{BD} \cong \overline{CF}$

Also AB | CF

Or BD || CF

i.e. BCFD is a parallelogram

 $\Rightarrow DE \parallel BC$

And $m\overline{DF} = m\overline{BC}$

But $m\overline{DE} = \frac{1}{2}m\overline{DF}$

 $\therefore m\overline{DE} = \frac{1}{2}m\overline{BC}$

Construction

Given

Vertical angles

 $(S.A.S \cong (S.A.S)$

Corresponding sides of congruent triangles

Given

Transitive property

Alternate angles are congruent

Opposite sides are parallelogram

Opposite sides of parallelogram

Construction

(:.mDF = mBC)

Definition: A median of a triangle is a line segment from a vertex to the midpoint of the opposite side.

THEOREM 11.4

<u>Statement</u>: The medians of a triangle are concurrent and their point of concurrency is the point of trisection of each median.

Given: In $\triangle ABC$, E and F are the midpoints of \overline{BC} and \overline{AC} respectively. \overline{AE} and \overline{BF} intersect each other at G. \overline{CG} is drawn to meet \overline{AB} at D.

To Prove: i) Medians are concurrent

ii) G is the point of trisection of each median

<u>Construction</u>: On \overrightarrow{CG} take a point H such that $\overrightarrow{CG} \cong \overrightarrow{GH}$. Join H to A and B.

Proof:

Proof:		
.` Statements	Reasons	
$\frac{\text{In } \Delta ACH}{FG \parallel \overline{AH}}$	\overline{FG} joins midpoints of \overline{CA} and \overline{CH}	
i.e. $\overline{FB} \parallel \overline{AH}$	251	
Similarly in ΔBCH	G and E are midpoints of \overline{CH} and \overline{CB}	
GE HB	1.0	
Or AE HB ∴ AHBG is a parallelogram	Opposite sides are parallel	
i.e. $\overline{AD} \cong \overline{BD}$	Diagonals of a parallelogram bisect each other	
Or \underline{D} is the midpoint of \underline{AB}		
Or CGD is a median		
Hence all the three medians are con- current		
Also $\overline{GD} \cong \overline{DH}$	Diagonals of a parallelogram bisect each other	
Or $m\overline{GD} = \frac{1}{2}m\overline{GH} = \frac{1}{2}m\overline{GC}$	$\therefore \overline{CG} \cong \overline{GH}$ (construction)	
Similarly it can be proved that		
$m\overline{GE} = \frac{1}{2}m\overline{AG}$		
And $m\overline{FG} = \frac{1}{2}m\overline{GB}$		
Hence G is the point of trisection of each median.		

<u>Definition</u>: The two lines which do not intersect each other and which are coplanar are called *parallel lines*. The two lines which intersect each other at right angle are called *perpendicular lines*.

THEOREM 11.5

<u>Statement</u>: If three or more parallel lines make congruent intercepts on a transversal, they also intercept congruent segments on any other line that cuts them.

Given: Lines $\overrightarrow{AB} \parallel \overrightarrow{CD} \parallel \overrightarrow{EF}$.

The transversal \overrightarrow{LX} intersects $\overrightarrow{AB}, \overrightarrow{CD}$ and \overrightarrow{EF} at the points

M, N and P such that $\overline{MN} \cong \overline{NP}$. Another transversal \overrightarrow{QY} in-

tersects them at points R, S, T respectively.

To Prove: $\overline{RS} \cong \overline{ST}$

Construction: Draw $\overline{RU} \parallel \overline{LX}$ which meets \overline{CD} at U and from

S draw $\overline{RV} \parallel \overline{LX}$ which meets \overline{EF} at V. Label the angles as $\angle 1, \angle 2, \angle 3$ and $\angle 4$.

Proof:		
Statements	Reasons	
$\overline{RU} \parallel \overline{LX}$	Construction	
$\overline{AB} \parallel \overline{CD}$	Given	
MNUR is a parallelogram	By definition	
Thus $\overline{MN} \cong \overline{RU} \longrightarrow (1)$	Opposite sides of parallelogram	
Similarly $\overline{NP} \cong \overline{SV} \longrightarrow (2)$	1240.60111	
But $\overline{MN} \cong \overline{NP} \longrightarrow (3)$	Given	
$\therefore \overline{RU} \cong \overline{SV}$	From (1), (2) and (3)	
So $RU \overline{SV} $	Both are congruent to \overline{LX}	
Now in $\triangle RUS \longleftrightarrow \triangle SVT$		
$\overline{RU} \cong \overline{SV}$	Proved	
∠1≅∠2	Corresponding angles	
∠3 ≅ ∠4	Corresponding angles	
$\therefore \Delta RUS \cong \Delta SVT$	$(A.S.A \cong A.S.A)$	
Hence $\overline{RS} \cong \overline{ST}$	Corresponding sides of the congruent triangle	

EXERCISE 11.1

Q1: Measure of one of the angles of parallelograms is 70°. Find the measure of the remaining angles.

Given: ABCD is a parallelogram in which $m \angle B = 70^{\circ}$.

To Prove: $m \angle C = 70^{\circ}$

(Opposite angles of parallelogram are congruent)

$$\angle A + \angle B + \angle C + \angle D = 360^\circ$$
 (Sum of all angles are 360°)

$$\angle A + 70^{\circ} + 70^{\circ} + \angle D$$

$$\angle A + \angle D = 360^{\circ} - 70^{\circ} - 70^{\circ}$$

$$\angle A + \angle D = 220^{\circ} \Rightarrow \angle A = \angle D = \frac{220^{\circ}}{2} = 110^{\circ}$$

Hence $m \angle C = 70^{\circ}$, $m \angle A = 110^{\circ}$ m and $m \angle D = 110^{\circ}$

O2: Measure of one of the exterior angles of a parallelogram is 125°. Find the measure of all of its interior angles.

Solution: Given parallelogram ABCD in which one exterior angle is $\angle BDX = 125^{\circ}$

i.e.
$$\angle BDX + \angle BDC = 180^{\circ\prime}$$

(Supplementary angles)

$$125'' + \angle BDC' = 180''$$

$$\angle BDC' = 180'' - 125'' = 55'' \text{ or } \angle D = 55''$$

So
$$\angle A = 55''$$

(Opposite angle of parallelogram)

$$\angle A + \angle B + \angle C + \angle D = 360^{\circ}$$

(Sum of all angles is 360°)

Putting the values of $\angle A = \angle D = 55^{\circ}$

$$55'' + \angle B + \angle C + 55'' = 360''$$

$$\angle B + \angle C + 110^{\circ} = 360^{\circ}$$

$$\Rightarrow \angle B + \angle C = 360^{\circ\prime\prime} - 110^{\circ\prime\prime}$$

So \(\angle C = 125"\)

Hence $\angle A = 55^{\circ}$, $\angle D = 55^{\circ}$, $\angle B = 125^{\circ}$ and $\angle C = 125^{\circ}$ Ans.

Q3: RSTU is a parallelogram. Find ST.

Solution: We know sum of all sides of parallelogram

$$\Rightarrow n-12+n-12+n-24+n-24=0$$

$$\Rightarrow 4n - 72 = 0$$

$$\Rightarrow 4n = 72$$

$$\Rightarrow n = \frac{72}{4} = 18$$

Now
$$ST = n - 12$$

$$\Rightarrow ST = 18 - 12 = 6$$

Hence
$$[ST = 6]$$
 Ans.

Q4: Find the value of each variable in the parallelogram using the properties:

i)

Solution:

Since ABCD is a parallelogram,

In parallelogram opposite sides are equal. Since BC = AD and AB = DC

So
$$y = 9$$
, $y = 15$

ii)

Solution: Since AB = DC

$$\Rightarrow m : 1 = 6 \Rightarrow m = 6 - 1 = 5$$

And AD = BC'

$$\Rightarrow$$
 $n=12$ and $m=5$

iii)

Solution: Since opposite angles of parallelogram are equal.

$$\Rightarrow P' = \frac{120^{\circ}}{2} = 60^{\circ}$$

$$P'' = 60''$$
 Ans.

iv)

$$\Rightarrow Z = 20 + 8 = 28$$
And ...1 = $\angle (' \Rightarrow (d - 20)' = 105''$

$$\Rightarrow d = 105'' + 20'' = 125$$

Q5: \overline{DE} is a mid segment of AABC. Find the value of x.

i

Solution: We know that,

$$\overrightarrow{DE} = \frac{1}{2}\overrightarrow{BC}$$
 or $x = \frac{1}{2}(26^{\circ x})$

$$\Rightarrow \boxed{x \mid 13}$$
 Ans.

ii)

Solution: We know that.

$$\overline{AB} = 2\overline{DE} \text{ or } x = 2(5)$$

$$\frac{1}{1} = 10!$$
 Ans.

in

Solution: Since
$$DE = \frac{1}{2}.1B$$

$$\therefore x = \frac{1}{2}(6) = \left[\frac{x-3}{x-3} \right] \qquad \text{Ans.}$$

Q6: Prove that diagonals of a rhombus bisect its angles.

Solution: Let AC and BD be the two diagonals of the rhombus.

Since $\overline{AB} \parallel \overline{CD}$, so $\angle 3 \cong \angle 4$

And $\angle 1 \cong \angle 2$ because opposite angles of parallel sides are congruent.

Similarly $\angle 7 \cong \angle 8$ and $\angle 5 \cong \angle 6$

Hence the diagonals of a rhombus bisects the angles.

Q7: In rhombus MNOP, $m \angle N = 60^{\circ}$. What is $m \angle O$?

Solution: Since $m \angle N = 60^{\circ}$ and $\angle N \cong \angle P$

$$\Rightarrow \angle P = 60^{\circ}$$

But $\angle M + \angle N + \angle O + \angle P = 360^{\circ}$

(Sum of all angles are 360°)

$$\angle M + 60^{\circ\prime} + \angle O + 60^{\circ\prime} = 360^{\circ\prime}$$

$$\angle M + \angle O + 120'' = 360''$$

$$\Rightarrow \angle M + \angle O = 360^{\circ} - 120^{\circ}$$

$$\angle M + \angle O = 240^{\circ}$$

$$\Rightarrow \angle M = \angle O = \frac{240^{\circ}}{2} = \boxed{120^{\circ}}$$

Hence $m\angle O = 120^{\circ}$ Ans

Q8: Prove that diagonals of a rectangle are congruent.

Given: ABCD is a rectangle in which $\overline{AB} \cong \overline{DC}$

And $\overline{AD} \cong \overline{BC}$.

To prove: $\overrightarrow{AC} \cong \overrightarrow{BD}$

Proof:

Statement	Reasons
In $\triangle ADC \longleftrightarrow \triangle BCD$	
$\overline{CD} \cong \overline{CD}$	Common
$m \angle D \cong m \angle C'$	Each is 90°
$\overline{AD} \cong \overline{BC}$	Given
$\therefore \Delta ADC \cong \Delta BCD$	(A.A.S)
Hence $\overline{AC} \cong \overline{BD}$	Corresponding sides

Q9: In a $\triangle ABC$, D and E are two points on \overline{AB} and \overline{AC} , such that $m\overline{AD} = \frac{1}{4}$

 \overrightarrow{mAB} and $\overrightarrow{mAE} = \frac{1}{4} \overrightarrow{mAC}$. Prove that $\overrightarrow{mDE} = \frac{1}{4} \overrightarrow{mBC}$.

<u>Given</u>: $\triangle ABC$ in which $\overline{AD} = \frac{1}{4}\overline{AB}$, $\overline{AE} = \frac{1}{4}\overline{AC}$

<u>To Prove</u>: $\overline{DE} = \frac{1}{4}\overline{BC}$

Construction: Join F with G and D such that

$$m\overline{DG} \cong m\overline{GF}$$
 and $\overline{GC} \cong m\overline{GE}$. Produce \overline{CF} such that $\overline{CF} = \frac{1}{4}\overline{BC}$.

Proof:

Statement	Reasons
In $\triangle DEG \longleftrightarrow \triangle CGF$	8
$\overline{DG} \cong \overline{GF}$	Construction
$\overline{GE} \cong \overline{GC}$	Construction
$m \angle 1 \cong m \angle 2$	Vertical angles
$\therefore \Delta DEG \cong \Delta CGF$	$S.A.S \cong S.A.S$
So $\overline{DE} \cong \overline{CF}$	Corresponding sides
But $CF = \frac{1}{4}\overline{BC}$	Construction
$\therefore \overline{DE} \cong \frac{1}{4} \overline{BC}$	Transitive property

Q10: G is the centroid of $\triangle ABC$, BG = 6, AF = 12 and AE = 15. Find the length of the segment.

- FC i)
- ii) BF
- iii) AG
- iv) \overline{GE}

Solution:

i) FC

Since \overline{BF} is the median of \overline{AC} so $\overline{AF} = \overline{F}$

Since BG: GF = 2:1 or BG: GF = 6:3

Hence
$$\overline{BF} = \overline{BG} + GF = 6 + 3 = 9$$

iii) AG

Since
$$\overline{AE} = \overline{AG} + \overline{GE} = 10 + 2 = 12$$

Hence
$$\overline{AG} = 10$$

iv) GE

Since
$$\overline{AG}: \overline{GE} = 10:2 \Rightarrow \overline{GE} = 2$$
 Ans.

Given: In $\triangle ABC$ points D, E, F are midpoints of AB, AC, BC. Four triangles are formed by joining these points.

Or
$$m\overline{DE} = \frac{1}{2}m\overline{BL}$$
 or $\overline{DE} \cong m\overline{BF}$

So BFED is a parallelogram.

So $\triangle BFD \cong \triangle DEF$ $\Rightarrow \overline{DE} = \overline{BF}$ and $\overline{BD} \cong \overline{EF}$ Similarly $\triangle ADE \cong \triangle DEF$ and $\triangle CEF \cong \triangle DEF$ Hence all four triangles are congruent.

Q12: In the given $\triangle ABC$, D and E are the midpoints of \overline{AB} and \overline{AC} , and $m\overline{CF} = \frac{1}{2}m\overline{BC}$.

Solution: Given: In $\triangle ABC$

$$\overline{AD} = \overline{BD}$$

And $\overline{AE} \cong \overline{EC}$

To Prove: $m\overrightarrow{CG} = \frac{1}{3}m\overrightarrow{AG}$

Proof:

Proof:	root:		
	Statement	Reasons	
In	ΔABC		
	$\overline{DE} \parallel \overline{BC}$	\overline{DE} joins the midpoint of $\triangle ABC$	
2	$\angle EDG \cong \angle CFG$	Alternate angles of parallel sides	
••	$m\overline{DE} = \frac{1}{2}m\overline{BC} \longrightarrow (1)$	183	
.1.	$\overline{DE} = \overline{BC}$ $m\overline{CF} = \frac{1}{2}m\overline{BC} \longrightarrow (2)$	t24u.com	
	$\overline{DE} \parallel \overline{BE}$	From equation (1) and equation (2)	
	$\overline{DE} \cong \overline{CF}$		
In	$\Delta GED \longleftrightarrow CFG$		
	$\angle EDG \cong \angle CFG$	Proved above	
	$\angle DGE \cong \angle FGE$	Vertical angles	
	$\overline{DE} \cong \overline{CF}$	Proved	
	$\Delta GED \cong \Delta CFG$	The state of the s	
Hence	$\overline{EG} \cong \overline{GC}$	Corresponding sides	
	$AE \cong \overline{CE}$	Corresponding sides	
	$\overline{CG} + \overline{CG} = \overline{CE}$		
	$2\overline{CG} = \overline{CE} \longrightarrow (1)$		
Now	$\overline{AG} \cong \overline{CE} + \overline{EG}$	From $\overline{CE} \cong 2\overline{CG} + \overline{EG} = \overline{GC}$	
	$\overline{AG} \cong \overline{CG} + \overline{EG}$		
	$\overline{AG} \cong 2\overline{CG} + \overline{GC}$		
	$\overline{AG} \cong 3\overline{CG}$		
	$\overline{CG} = \frac{1}{3}\overline{AG}$		

		REVIEW EXERCISE 11		
Q1: Select the correct answers:				
i)	Which quadrilateral must (a) Rhombus (e) Trapezoid	t have diagonals that are congruent and perpendicular? (b) Square (d) Parallelogram		
ii)	How many equilateral triangle? (a) 2 (b) 3	angles can be made by joining the midpoints of the sides of ✓ (c) 4 (d) Cannot be determined		
iii)	 (a) If a parallelogram is not a rectangle, then it is not a square (b) If a parallelogram is not a square, then it is not a rectangle (c) All rectangles are squares (d) If a parallelogram is a rectangle, then it is a square 			
iv)	Which quadrilateral's di ure's opposite angles? (a) Trapezoid ✓ (c) Rhombus	agonals are perpendicular to each other and bisect the fig- (b) Rectangle (d) Parallelogram		
v)				
vi)	Medians of a triangle are \checkmark (a) 2:1 (b) 2:3	Medians of a triangle are divided by the point of concurrency in the ratio: \checkmark (a) 2:1 (b) 2:3 (c) 1:3 (d) None of these		
vii) Centroid is the point of concurrency is: ✓ (a) Medians of a triangle (b) Angle bisectors of a triangle (c) Altitudes of a triangle (d) Perpendicular bisectors of a triangle				
viii) If sum of the measures $m\angle B = \dots$ (a) 25° (b) 50°	of ∠A and ∠C of a parallelogram ABCD is 120°, then (c) 65° ✓ (d) None of these		
ix)	Diagonals of a square ar √ (a) Perpendicular (c) Congruent	eto each other. (b) Not congruent (d) Parallel		
x)	Sum of the measures of (a) 2 right angles (c) 3 right angles	interior angles of a quadrilateral is: √ (b) 4 right angles (d) None of these		

Q2: Measure of one of the angles of parallelogram is 60°. Find the measure of the

Solution:

remaining angles.

Since
$$\angle A = 60^{\circ}$$
 $\Rightarrow \angle A \cong \angle C = 60^{\circ}$
 $\Rightarrow \angle A + \angle B + \angle C + \angle D = 360^{\circ}$
 $\Rightarrow 60^{\circ} + \angle B + 60^{\circ} + \angle D = 360^{\circ}$ $\therefore \angle B = 20^{\circ}$

$$\therefore \angle B = \angle D = 120^{\circ}$$

$$\Rightarrow \angle B + \angle D + 120^{\circ} = 360^{\circ}$$

$$\Rightarrow \angle B = \frac{240^{\circ}}{2} = 120^{\circ}$$

Q3: Measure of one of the exterior angles of a parallelogram is 130°. Find the measure of all of its interior angles.

Solution:

Since
$$\angle CBE = 130^{\circ}$$

So
$$\angle ABC + \angle CBE = 180^{\circ\prime}$$

$$\Rightarrow \angle ABC + 130^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle ABC = 180'' - 130'' = 50''$$

$$\therefore \angle D \cong \angle B = 50^{\circ}$$

Now
$$\angle A + \angle B + \angle C + \angle D = 360^{\circ}$$

$$\Rightarrow \angle A + 50^{\circ} + \angle C + 50^{\circ} = 360^{\circ}$$

$$\Rightarrow \angle A + \angle C = 360^{\circ} - 100^{\circ} = 260^{\circ}$$

$$\Rightarrow \angle A = \frac{260^{\circ}}{2} = 130^{\circ}$$

Q4: Prove that the line segments joining the midpoints of the sides of a quadrilateral taken in order, form a parallelogram.

Given: ABCD is a quadrilateral points P, Q, R, S are the mid-

points of
$$\overline{AD}$$
, \overline{AB} , \overline{BC} , \overline{CD} .

To Prove: PQRS is a parallelogram.

Construction: Draw diagonal \overline{AC} .

Proof: In $\triangle ADC$, P and S are midpoints of \overline{AD} and \overline{CD} .

So
$$\overline{PS} \parallel \overline{AC} \longrightarrow (1)$$

$$\Rightarrow m\overline{PS} = \frac{1}{2}m\overline{AC} \longrightarrow (2)$$

In $\triangle ABC$, Q and R are midpoints of \overline{AB} and \overline{BC}

So
$$\overline{QR} \parallel \overline{AC} \longrightarrow (3)$$

And
$$m\overline{QR} = \frac{1}{2}m\overline{AC} \longrightarrow (4)$$

$$\therefore \overline{PS} \parallel \overline{QR}$$
 from (1) and (3) and $\overline{PS} \parallel \overline{QR}$

From (2) and (4) similarly $\overline{PQ} \parallel \overline{RS}$ Hence PQRS is a parallelogram.

Q5: In rhombus MNOP, $m \angle N = 70^{\circ}$, what is $m \angle O$?

Solution: Given $m \angle N = 70^{\circ}$

As
$$m \angle N = m \angle P$$
, so $m \angle P = 70^{\circ}$

Now
$$\angle M + \angle N + \angle O + \angle P = 360^{\circ}$$

$$\angle M + 70^{\circ} + \angle O + 70^{\circ} = 360^{\circ}$$

$$\angle M + \angle O + 140'' = 360''$$

$$\angle M + \angle O = 360^{\circ} - 140^{\circ} = 220^{\circ}$$

OR
$$\angle O = \frac{220''}{2} = 110''$$

$$\angle M = \angle O = 110^{\circ}$$
 Ans.

(Sum of all angles are 360°)

Q6: Measure of one of the angles of parallelogram is 50°. Find the measure of the remaining angles.

Solution:

Given ABCD is a parallelogram

Such that $m \angle A = 50^{\circ}$

Required:

 $\angle B, \angle C, \angle D$

ertect2

Statement		Reasons	
	$\overline{AD} \parallel \overline{BC}$	Opposite sides	
	$m\angle A + m\angle B = 180^{\circ\prime}$	Supplementary angles	
	$m\angle A = 50^{\circ}$	Given	
⇒	$m\angle B = 180^{\circ\prime} - 50^{\circ\prime} = 130^{\circ\prime}$, 10
	$m\angle A = m\angle C = 50^{\circ}$	Opposite angles of parallelogram	
	$m\angle B = m\angle O = 130^{\circ}$	Opposite angles of parallelogram	
Hence	$m\angle B = 130^{\circ\prime}$		
	$m\angle O = 130^{\prime\prime}$		
	$m \angle C = 50^{\circ}$		

Additional MCQs of Unit 11: Parallelograms and Triangles

1.	18781 - TANDER BERTHARD REST STAND TO SELECT AND SEL		
	(a) Quadrilateral.(b) Rectangle(c) Square✓ Ans. (a) Quadrilateral	(d) none	
2.	2. In geometry, a figure that lies in a plane is called	figure.	
	(a) Space (b) Cartesian (c) Plane ✓ Ans. (c) Plane	(d) none	
3.	3. When all four sides are congruent then the figure is	(
	(a) Rectangle (b) Rhombus (c) Square ✓ Ans. (c) Square	(d) none	
4.	4. A quadrilateral in which all sides and all angles are congr	uent is called	
		(d) none	
5.	5. If two opposite sides of a quadrilateral are congruent then	it is	
	(a) Square (b) Rectangle (c) Parallelogram		
	✓ Ans. (c) Parallelogram		
6.	6. The diagonal divides which quadrilateral into two congru (a) Square (b) Rectangle (c) Parallelogram ✓ Ans. (d) All		
7.	 The line segment joining the midpoints of two sides of a side. 	triangle isto third	
	(a) Parallel (b) Perpendicular (c) Intersect	(d) none	
	✓ Ans. (a) Parallel	*	
8.	The state of the s	opposite side of a triangle	
	is	(d) none	
	✓ Ans. (c) Median	(4) 110115	
9.	9. The medians of a triangle are		
	(a) Different (b) Concurrent (e) Proportional	(d) none	
	✓ Ans. (b) Concurrent		
10.	10. The two lines which do not intersect and are Coplanar are	:lines.	
	(a) Parallel (b) Perpendicular (c) Horizontal	(d) none	
	✓ Ans. (a) Parallel		
