......

UNIT 10:

CONGRUENT TRIANGLES

Two plane figures are congruent if they have same size and same shape. A triangle has six elements. In which three are sides and three are angles.

Definition:

Two triangles $\triangle ABC$ and $\triangle DEF$ are said to be congruent if the following six conditions are hold:

- i) $\angle A \cong \angle D$
- ii) $\angle B \cong \angle E$
- iii) $\angle C \cong F$
- iv) $\overline{AB} \cong \overline{DF}$
- v) $\overline{BC} \cong \overline{EF}$
- vi) $\overline{AC} \cong \overline{DE}$

Then we write $\triangle ABC \cong \triangle DEF$

Properties of Congruent Triangles:

- 1. $\triangle ABC \cong \triangle ABC$, this is called identity congruence which means every triangle is congruent to itself.
- 2. If $\triangle ABC \cong \triangle DEF$ then $\triangle DEF \cong \triangle ABC$, this is called symmetric property of congruence.
- 3. If $\triangle ABC \cong \triangle DEF$ and $\triangle DEF \cong \triangle XYZ$ then $\triangle ABC \cong \triangle XYZ$, this is called transitive property of congruence.

Remember: S.A.S

If two sides and their included angle of one triangle are congruent to two sides and their included angle of another triangle then the two triangles are congruent.

THEOREM 10.1

Statement: If two angles and a non-included side of one triangle are congruent to the corresponding angles and non-included side of another triangle, then the triangles are congruent.

Given: In $\triangle ABC \longleftrightarrow \triangle DEF$

 $\overline{BC} \cong \overline{EF}$, $\angle B \cong \angle E$ and $\angle C \cong \angle F$

To Prove: $\triangle ABC \cong \triangle DEF$

Construction: Suppose $\overline{AC} \not\equiv \overline{DF}$ and $\overline{AC} \cong \overline{D'F}$, where D' is a point on \overline{DF} . Join D' to E.

Proof:

Statements	Reasons
In $\triangle ABC \longleftrightarrow \triangle D'EF$	

$\overline{BC} \cong \overline{EF}$	Given
$\angle C \cong \angle F$	Given
$\overline{AC} \cong \overline{D'F}$	Supposition
$\therefore \Delta ABC \cong \Delta D'EF$	$(S.A.S \cong S.A.S)$
Hence $\angle B \cong \angle D'EF$	Corresponding angles of congruent triangles
But $\angle DEF \cong \angle B$	Given
$\therefore \angle D'EF \cong DEF$	Transitive property
$\Rightarrow \overline{ED} \cong \overline{ED'}$	
Thus $\overline{AC} \cong \overline{DF}$	
In $\triangle ABC \longleftrightarrow \triangle DEF$	5,
$\overline{BC} \cong \overline{EF}$	Given
$\overline{AC} \cong \overline{DF}$	Already proved
$\angle C \cong \angle F$	Given
$\therefore \Delta ABC \cong \Delta DEF$	(S.A.S)≅(S.A.S)

THEOREM 10.2

Statement: If two angles of a triangle are congruent then the side opposite to these angles must be congruent.

Given: In $\triangle ABC$, $\angle B \cong \angle C$

To Prove: $AB \equiv AC$

Construction:

Draw bisector of $\angle A$ cutting BC at point D.

Proof:

Statements	Reasons
In $\triangle ABC \longleftrightarrow \triangle ACD$	
$\overline{AD} \cong \overline{AD}$	Common
$m\angle 1 \cong m\angle 2$	Construction
$m \angle B \cong m \angle C$	Given
$:: \Delta ABD \cong \Delta ACD$	$(A.A.S \cong A.A.S)$
Hence $\overline{AB} \cong \overline{AC}$	Corresponding sides of congruent triangles

THEOREM 10.3

Statement: In a correspondence of two triangle, if three sides of one triangle are congruent to the corresponding three sides of the other, the two triangles are congruent.

Given: In $\triangle ABC \longleftrightarrow \triangle DEF$

 $\overline{AB} \cong \overline{DE}, \overline{BC} \cong \overline{EF} \text{ and } \overline{CA} \cong \overline{FD}$

To Prove: $\triangle ABC \cong \triangle DEF$

<u>Construction</u>: Suppose \overline{BC} is not shorter than any of the other two sides of $\triangle ABC$. Construct $\triangle GEF$ such that $\overline{GE} \cong \overline{AB}$. Join G with D.

Proof:

Statements	Reasons	
In $\triangle ABC \longleftrightarrow \triangle GEF$	101	
$\overline{BC} \cong \overline{EF}$	Given	
$\therefore m \angle B \cong \angle GEF$	Construction	
$\overline{AB} \cong \overline{GE}$	Construction	
$\therefore \Delta ABC \cong \Delta GEF$	(S.A.S≅ S.A.S)	
So $\overline{GF} \cong \overline{AC}$	Corresponding sides of congruent triangles	
But $\overline{DF} \cong \overline{AC}$	Given /	
$\therefore \overline{GF} \cong \overline{DF} \longrightarrow (1)$	Transitive property	
In ΔFDG ,		
$\angle 3 \cong \angle 4 \longrightarrow (2)$	ΔDFG is isosceles	
In $\triangle EGD$,		
$\overline{DE} \cong \overline{EG}$	F-1:	
	Each is congruent to AB	
$\therefore \angle 1 \cong \angle 2 \longrightarrow (3)$	By (2) and (3)	
$\therefore \angle 3 + \angle 1 \cong \angle 4 + \angle 2$		
$\therefore m \angle D \cong m \angle G$	Addition of angles postulate	
In the correspondence		
$ \begin{array}{ccc} \ln \Delta DEF & \longrightarrow \Delta GEF \\ \hline \hline DB & GB \end{array} $	nd	
$DE \cong GE$	Proved	
$\angle D \cong \angle G$	Proved	
$DE \cong FG$	From equation (1)	
$\therefore \Delta DEF \cong \Delta GEF$	(S.A.S)	
But $\triangle ABC \cong \triangle GEF$	Proved	
Hence $\triangle ABC \cong \triangle GEF$	From transitive property	

THEOREM 10.4

<u>Statement</u>: If in the correspondence of two triangles, the hypotenuse and one side of one are congruent to the hypotenuse and one side of other, then triangles are congruent.

Given: In $\triangle ABC$, $\triangle DEF$

 $\angle ABC \cong \angle E$ (Each is right angle)

 $\overline{AC} \cong \overline{DF}$ and $\overline{BC} \cong \overline{EF}$

To Prove: $\triangle ABC \cong \triangle DEF$

Construction:

Produce \overline{AB} to the point G such that $\overline{BG} \cong \overline{DE}$. Join C with G.

Proof:

Statements	Reasons
In $\triangle GBC$ $m\angle CBG = 90^{\circ}$	Given
$\underline{In\ \Delta GBC} \longleftrightarrow \Delta DEF$	c/\
$GB \cong DE$	Construction
$\angle GBC \cong \angle DEF$	Each is right angle or 90°
$\therefore \Delta GBC \cong \Delta DEF$	$(S.A.S \cong S.A.S)$
$\overline{GC} \cong \overline{DF}$	Correspondence sides of congruent triangles
But $\overline{DF} \cong \overline{AC}$ $\therefore \overline{GC} \cong \overline{AC}$	ect24u.com
⇒ ZA≅ZG	Angles opposite to congruent sides of $\triangle CAG$
In $\triangle ABC \longleftrightarrow \triangle GBC$	NO.
$\overline{AC} \cong \overline{GC}$	Proved
$\angle A \cong \angle G$	Proved
$\angle ABC \cong \angle GBC$	Each is of 90°
$\therefore \Delta ABC \cong \Delta GBC$	(A.A.S)
But $\triangle GBC \cong \triangle DEF$	Proved
$\therefore \Delta ABC \cong \Delta DEF$	From transitive property

EXERCISE 10.1

Q1: Prove that the perpendiculars drawn from the endpoints of the base of an isosceles triangle to their opposite sides are congruent.

Given: $\triangle ABC$ in which $\overline{AC} \cong \overline{BC}$

And $\overline{AE} \perp \overline{BC}$ And $\overline{CD} \perp \overline{AB}$

<u>To Prove</u>: $m\overline{AE} \cong m\overline{CD}$ <u>Proof</u>: In $\Delta CAD \longleftrightarrow \Delta ACE$

Statements	Reasons
$m\angle CAD \cong m\angle ACE$	Angles opposite to congruent sides of triangle
$m\overline{AC} \cong m\overline{AC}$	Common
$m\angle CDA \cong m\angle AEC$	Both are of 90°
$\therefore \Delta CAD \cong \Delta ACE \qquad .$	(A.A.S)
Thus $m\overline{AE} \cong m\overline{CD}$	Corresponding sides of congruent triangles

Q2: In the given figure $\overline{AC} \cong \overline{CE}$ and $\angle B \cong \angle D$ prove that $\overline{BC} \cong \overline{CD}$.

Given: $\overline{AC} \cong \overline{CE}$

And $\angle B \cong \angle D$

To Prove:

 $\overline{BC} \cong \overline{CD}$

Proof:

Statements	Reasons
In $\triangle ABC \longleftrightarrow \triangle DEC$	5
$\overline{AC} \cong \overline{CE}$	Given
$\angle B \cong \angle D$	Given
$\angle ACB \cong \angle DCE$	Vertical angles
$\therefore \Delta ABC \cong \Delta DEC$	(A.A.S),
So $\overline{BC} \cong \overline{CD}$	Corresponding sides of congruent triangles

Q3: Given: C is the midpoint of \overline{BE} . $\angle B \cong \overline{C}$, Prove: $\triangle ABC \cong \triangle DEC$.

Given: C is midpoint

And $\angle B \cong \angle E$

To Prove:

 $\triangle ABC \cong \triangle DEC$

Proof:

Statements	<u> </u>	Reasons	
In $\triangle ABC \longleftrightarrow \triangle DEC$			
$m\overline{BC} \cong \overline{CE}$	Given	is mid	point
$m \angle B \cong m \angle E$	Given .		ž.
$m\angle 1 \cong m\angle 2$	Vertical angles		E 2
$\therefore \Delta ABC \cong \Delta DEC$	(A.A.S)		1

Q4: ABC is a triangle in which $m\angle A = 35^{\circ}$ and $m\angle B = 100^{\circ}$, $\overline{BD} \perp \overline{AC}$. Prove that $\triangle BDC$ is an isosceles triangle.

Given: $\triangle ABC$ in which $m \angle A = 45^{\circ}$, $m \angle B = 100^{\circ}$

And $\overline{BD} \perp \overline{AC}$

To Prove:

 $\overline{BD} \cong \overline{CD}$ or $\triangle BDC$ is isosceles triangle.

Proof:

Proof:	
Statements	Reasons
$\angle A = 35^{\circ}$, $\angle ABC = 100^{\circ}$	Given .
$\overline{BD} \perp \overline{AC}$	Given
$m\angle ADB = \angle BDC = 90^{\circ}$	Both are supplementary angles
In ∆ADB	
$m\angle ABD = 90^{\circ} - 35^{\circ} = 55^{\circ}$	-5.
In ∆BDC	4.01
$m \angle DBC = 100^{\circ} - 55^{\circ} = 45^{\circ}$	10
So $m \angle BCD = 90^{\circ} - 45^{\circ} = 45^{\circ}$	
So in $\triangle BDC$	Sides opposite to congruent angles
$\overline{BD} \cong \overline{CD}$	

Q5: Prove that the bisector of the vertex angle of an isosceles triangle is the perpendicular bisector of the base.

Given:

 $\triangle ABC$ in which \overline{AC} is the base of $\triangle ABC$

And $\overline{BD} \perp \overline{AC}$

To Prove:

 $\overline{AB} \cong \overline{BC}$

Proof:

Statements	Reasons	
In $\triangle ABD \longleftrightarrow \triangle CBD$		
$\overline{BD} \cong \overline{BD}$	Common	
$m \angle ADB \cong \angle CDB$	Each is right angle	
$m\angle ABD \cong \angle CBD$	Given	
$\therefore \Delta ABD \cong \Delta CBD$	(A.A.S)	
Thus $\overline{AB} \cong \overline{BC}$	Corresponding sides of congruent ΔS	

Q6: PQRS is a square. X, Y and Z are the midpoints of \overline{PQ} , \overline{QR} and \overline{RS} respectively. Prove that $\Delta PXY = \Delta SZY$.

Given:

PQRS is a square in which X,

And Z are midpoints of $\overline{PQ}, \overline{QR}$

And \overline{RS} respectively.

To Prove: $\Delta PXY \cong \Delta SZY$

Proof:

Statements	Reasons
In $\triangle PXY \longleftrightarrow \triangle SZY$	
$\overline{PX} \cong \overline{SZ}$	Given X and Z are midpoints
$\overline{PY} \cong \overline{SY}$	Corresponding sides of congruent triangles isosceles Δ
$\overline{XY} \cong \overline{ZY}$	Corresponding sides of congruent triangles
$\Delta PXY \cong \Delta SZY$	S.S.S

Q7: Given: $\overline{AB} \perp \overline{BC}$, $\overline{AD} \perp \overline{DC}$, $\overline{AB} \cong \overline{AD}$. Prove that: $\triangle ABC \cong \triangle ADC$.

Given: $\overline{AB} \perp \overline{BC}$

$$\overline{AD} \perp \overline{CD}, \overline{AB} \cong \overline{AD}$$

To Prove:

 $\triangle ABC \cong \triangle ADC$

Proof:

Statements	Reasons
In $\triangle ABC \longleftrightarrow \triangle ADC$	100
$\overline{AB} \cong \overline{AD}$	Given
$m\angle ABC \cong m\angle ADC$	(Each is of 90°) Given
$\overline{AC} \cong \overline{AC}$	Common
$\therefore \Delta ABC \cong \Delta ADC$	(S.A.S)

Q8: QUAD is a rectangle. Find x. OC = x, DC = 3x - 8

Solution:

If O is the midpoint of \overline{AD} , join O to C.

Then in $\triangle OCD$, $(CD)^2 - (OC)^2 + (OD)^2$

Pythagoras theorem

$$(3x-8)^2 = (x)^2 + \left(\frac{x}{2}\right)^2$$

$$(3x-8)^2=x^2$$

$$9x^2 + 64 - 48x = x^2$$

OR
$$9x^2 - x^2 - 48x + 64 = 0$$

$$8x^2 - 48x + 64 = 0$$

(Divide by 8)

$$x^2 - 6x + 8 = 0 \implies x^2 - 2x - 4x + 8 = 0$$

$$x(x-2)-4(x-2)=0 \Rightarrow (x-2)(x-4)=0$$

$$x - 2 = 0$$

OR
$$x - 4 = 0$$

$$\Rightarrow x=2$$

OR
$$x = 4$$

But $x \neq 2$

Hence
$$x = 4$$
 Ans.

Review Exercise 10

O1: Select the correct answer.

- Which of the following is not a sufficient condition for the congruency of two triangles?
 - (a) A.S.A ≅ A.S.A
- (b) H.S≅H.S
- (c) S.A.A ≅ S.A.A
- \checkmark (d) A.A.A \cong A.A.A
- ii) The diagonal of...does not divide it into two congruent triangles.
 - (a) Rectangle

- (b) Square
- (c) Parallelogram
- √(d) Trapezium
- iii) In a given correspondence of two triangles, if $\triangle ABC \cong \triangle DEF$, then which of the following is not correct?
 - (a) $m\angle B = m\angle E$
- (b) mCA ≅ mFD
- (c) $m\angle CBA \cong m\angle FED$
- \checkmark (d) \angle ABC \cong \angle EFD
- iv) In $\triangle ABC$, if $m \angle A \cong m \angle B$ then bisector of.....divides the $\triangle ABC$ into two congruent triangles.
 - (a) ∠A
- (b) \(\angle B
- ✓ (c) ∠C (d) Any one of its angles
- v) Which of the following is a legitimate reason for declaring two triangles to be congruent?
 - (a) SSA ≅ SSA

- ✓ (b) SAS ≅ SAS
- (c) AAA ≅ AAA
- (d) All of these

Q2: In a $\triangle PQR$, the bisectors of $\angle Q$ and $\angle R$ meet at O. Prove that O is equidistant from the sides of the triangle.

Solution: In $\triangle PQR$, OR and OQ are the bisectors of $\angle R$ and $\angle Q$. Both bisectors meet at point O.

To Prove: $mOS \cong mOT$

Construction:

Draw $OS \perp \overline{QR}$ and $\overline{OT} \cong \overline{PQ}$.

Proof:

Statements	•	Reasons	
In $\Delta QTO \longleftrightarrow \Delta QSO$			C. 10 - 0
$m\angle QTO \cong \angle QSO$		Each is of 90°	
$m\overline{OQ} \cong m\overline{OQ}$		Common	
$m\angle OQS \cong m\angle OQT$		Given	
$\therefore \Delta QTO \cong \Delta QSO$		(A.A.S)	

So $m\widetilde{OS} \cong m\widetilde{OT}$

Corresponding sides of congruent triangles

Q3: In the given figure $\overline{AB} \cong \overline{CB}$ and $-\angle A \cong \angle C$, prove that $\overline{AE} \cong \overline{CD}$.

Solution:

 $\overline{AB} \cong \overline{BC}$ and $\angle A \cong \angle C$

To Prove:

 $\overline{AE} \cong \overline{CD}$

Proof:

Statements	Reasons
In $\triangle ABE \longleftrightarrow \triangle CBD$	00
$m\angle A \cong m\angle C$	Given
$m \angle B \cong m \angle B$	Common
$m\overline{AB} \cong m\overline{BC}$	Given
$\therefore \Delta ABE \cong \Delta CBD$	(A.A.S)
So $\overline{AE} \cong \overline{CD}$	Corresponding sides of congruent triangles

Q4: ABC is a triangle in which $m\angle A = 35^{\circ}$, $m\angle B = 100^{\circ}$, $\overline{BD} \perp \overline{AC}$. Prove that $\triangle BDC$ is an isosceles triangle.

Given: $\triangle ABC$, in which $m\angle A = 35^{\circ}$,

 $m\angle B = 100^{\circ}$

And $\overline{BD} \perp \overline{AC}$

To Prove: $\overline{BD} \cong \overline{CD}$

Or \(\Delta BDC \) is an isosceles triangle

Proof:

Statements	Reasons
$\angle A = 35^{\circ}, \angle ABC = 100^{\circ}$	Given
$m\overline{BD} \perp m\overline{AC}$	Given
$m \angle ADB = \angle BDC = 90^{\circ}$	Each is right angles
In ΔADB	
$m\angle ABD = 90^{\circ} - 35^{\circ} = 55^{\circ}$	
$m \angle DBC = 100^{\circ} - 55^{\circ} = 45^{\circ}$	×
So in $\triangle BDC$	
$m\overline{BD} = m\overline{CD}$	Sides opposite to congruent triangles

Additional MCQs of Unit 10:

	Congruent mangles
1.	When the three sides and three angles are equal then the triangles are
2.	SAS postulate means two sides and
3.	$\triangle ABC \longleftrightarrow \triangle DEF$ showsbetween two triangles. (a) Relation (b) Correspondence (c) Equality (d) none Ans. (b) Correspondence
4.	If two angles and their included side are congruent then we write
5.	If two sides of a triangle are congruent then it is
6.	A scalene triangle having three sides
7.	If hypotenuse and one side are congruent between two triangles then we write
8.	The diagonals of trapezium does not divide into two equal
9.	If two opposite sides are equal and parallel then it is called
10.	If $m\angle ABC = 90^{\circ}$ then such angle is called