Chemistry States of Matter

- Matter can exist (mainly) in three states- solid, liquid and gas.
- \quad State of matter is determined by the nature of intermolecular forces, molecular interactions and thermal energy of particles.
- Changeinthephysical statedoesnotchangethechemical properties of asubstance.
- Rates of Chemical reactions depend upon the physical state.
- Physical laws govern the behavior of matter in differentstates.

1. Intermolecular Forces

- Forcesofattractionandrepulsionbetweeninteracting particles(atomsandmolecules).
- Covalent bonding is not intermolecular force.

2. Van der Waals Forces

- Attractive intermolecular forces.
- These forces include dispersion forces or London forces, dipole-dipole forces and dipoleinduced dipole forces.
- Ion-dipole forces are not van der Waals forces.

a)Dispersion forces or London Forces

- Force of attraction between two temporary instantaneous dipoles.
- There forces are always attractive.
- Interactionenergy $\propto 1 / r^{6}$, wherer isthedistancebetweenthetwo particles.

Atom A

Atom B

Symmetrical distribution of electronic charge cloud

Atom 'A' with instantaneous dipole, more electron density on the right hand side

Atom 'B' with induced dipole

Atom 'A' more electron density on the left hand side

Atom 'B' with induced dipole

Fig. 5.2 Dispersion forces or London forces between atoms.

b) Dipole - Dipole Forces

- Present between the molecules possessing permanent dipoles.
- Forstationary polarmolecules: interaction energy $\propto 1 / r^{3}$
- For rotating polar molecules : interaction energy $\propto 1 / r^{6}$ where, $r=$ distance between polar molecules.

c) Hydrogen - bonding

- A special case of dipole-dipole interaction.
- ExistsinthemoleculeswhicharehighlypolarcontainingN-H,O-HorH-Fbonds.
- Energy of H -bond ≈ 10 to $100 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
- One of the important forces in proteins and nucleic acids.
- It determines the structure and properties of many compounds.
- INTERMOLECULAR HYDROGEN BOND

d) Dipole - Induced Dipole Forces

- Existsbetween polarmoleculeshavingpermanentdipoleandnon-polarmolecules.

Permanent dipole (a polar molecule)

Permanent dipole (a polar molecule)

non-polar molecule

Induced dipole in a non-polar molecule

- Existence of the three states of matter - It is due to the balance between intermolecular forces and the thermal energy of the molecules.
- Predominance of intermolecularinteractions

Gas \rightarrow liquid \rightarrow solid

- Predominance ofthermal energy

Gasヶ liquič solid
Comparison between gaseous and liquid states

Gaseous State	Liquid State
- Highly compressible	• Not compressible
- Much lower density than solids and liquids	• Denser than gases
- Volume and shape are not fixed	- Volume is fixed but shape is not
- Interactive forces are negligible	- Interactive forces are stronger than those
in gaseous state.	

3.The Gas Laws

1. Boyle's Law ($\boldsymbol{p}-\boldsymbol{V}$ relationship)

At constant $T \& n$ (no. of moles)
$p \propto \frac{1}{V}$
$P V=$ Constant OR

$$
P_{1} V_{1}=P_{2} V_{2}
$$

At a constanttemperature, the pressure exerted by a fixed mass of a gas is inversely proportional to its volume.

Graphical Representation
Isotherm-line/plotbetween $p \& V$ atconstanttemperatureforagiven amount (n) ofthegas.
Isobar - line/plotbetween V and I atconstantpressure (p) and n.
Isochore - line/plotbetween p and I atconstantvolume $(V) \& n$.

$p \rightarrow$
(C)
(ISOTHERMS)

2. Charles'Law (T-V relationship)

Atconstant P and n
$V \propto T$
$\underline{V}=$ constant
T
i.e. $\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$ or $\frac{V_{2}}{V_{1}}=\frac{T_{2}}{T_{1}}$

For a fixed mass of a gas, at a constant pressure, the volume of a gas is directly proportional to its absolute temperature.

Kelvin Temperature Scale or Absolute Temperature Scale

$$
T=\left(273.15+t^{0} \mathrm{C}\right) \mathrm{K}
$$

Also, known as thermodynamic scale of temperature.

Charles saw a linear relationship between the volume and temperature of a gas. Extrapolating backwards, he found that the point where a gas would have no volume would be -273 degrees Celsius. Since that's as cold as he thought things could ever get, that originated the idea of absolute zero.

Absolute Zero (the lowest possible temperature) - The lowest hypothetical or imaginary temperature at which gases are supposed to occupy zero volume. Absolute Zero is equal to $-273.15^{\circ} \mathrm{C}$

$$
-273.15{ }^{\circ} \mathrm{C}=0 \mathrm{~K}
$$

3. Gay Lussac's Law (p - T relationship)

$\mathrm{p} \propto \mathrm{T} \quad(\mathrm{V}, \mathrm{n}$ constant)

$$
p=\text { constant }
$$

$$
\begin{array}{ll}
p_{1} & =p_{2} \\
\overline{T_{1}} & \overline{T_{2}}
\end{array}
$$

4.Avogadro's Law (V-n Relationship) : At constantpand T

$V \propto n$

$$
V=k n
$$

- This law states that equal volumes of all gases under similar conditions of temperature and pressure contain equal number of molecules.
- No. ofmoleculesinonemole ofagas $=6.022 \times 10^{23}=N_{\mathrm{A}}$ (Avogadroconstant).
- MolarVolume-Volume occupied by onemole ofeach substance.
- It contains the same number of moleculesi.e. N_{A}.

Molar Volume at different T and P are as follows:

Conditions	Temperatur \mathbf{e}	Pressure	Molar Volume
NTP(Earlieralso called STP)	273.15 K	1 atm	$22.4 \mathrm{Lmol}^{-1}$
STP	273.15 K	1 bar	$22.7 \mathrm{Lmol}^{-1}$
SATP	298.15 K	1 bar	$24.8 \mathrm{Lmol}^{-1}$

- STP : Standard Temperature and Pressure
- NTP: Normal Temperature and Pressure
- SATP:Standard Ambient Temperature and Pressure

5. Density relationship

$$
\begin{gathered}
n=\frac{m}{M} \quad\binom{m=\text { mass of the gas }}{M} \\
V \underline{m}=\text { molarmass }) \\
M=k \underline{m} \\
V \\
M=k d
\end{gathered}
$$

where, $d=$ density of the gas density ofagas \propto molarmass (M)

Ideal gas equation or Equation of State

Gases can described in terms of four variables: pressure (P), volume (V), temperature (T), and the amount of gas (n). There are five relationships between pairs of these variables in which two of the variables were allowed to change while the other two were held constant.

$$
P \propto n \quad(T \text { and } V \text { constant })
$$

Boyle's law: $\quad P \propto 1 / V(T$ and n constant)
Gay Lusac's law: $P \propto T$ (V and n constant)
Charles' law: $V \propto T(P$ and n constant)
Avogadro's hypothesis: $V \propto n(P$ and T constant)

Each of these relationships is a special case of a more general relationship known as the ideal gas equation.

In this equation, R is a proportionality constant known as the ideal gas constant and T is the absolute temperature. The value of R depends on the units used'

Universal Gas Constant $: R$ is called gas constant. It is same for all gases. $\mathrm{R}=8.314 \mathrm{~Pa} \mathrm{~m}^{3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}=8.314 \times 10^{-2}$ bar L K ${ }^{-1}$ $\mathrm{mol}^{-1}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

$P 1 V 1=$	$P 2 V 2$
$T 1$	$T 2$

- Ideal gas equation in terms of density (Relationship between molar mass and density of a gas)
$p=\underline{d R T}$ (M is the molarmass, d is the density)
M
- Values ofthegas constant:
$0.0821 \mathrm{LatmK}^{-1} \mathrm{~mol}^{-1}$
$82.1 \mathrm{~cm}^{3} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$0.083 \mathrm{bar} \mathrm{dm}^{3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
- IntheC.G.S. units
$8.314 \times 10^{7} \mathrm{ergs} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
- In S.I. units
$8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\left(10^{7} \mathrm{erg}=\mathrm{I} \mathrm{J}\right)$
- In terms of calories
1.987 calories $\mathrm{K}^{-1} \mathrm{~mol}^{-1}(4.184 \mathrm{~J}=\mathrm{I}$ calorie $)$

Dalton's Law of Partial Pressures: Lawisvalid fornon-reacting gases, atconstantvolume\& constant Temperature.

$$
\begin{aligned}
P_{1} & =\frac{n_{1} R T}{V} \\
P_{2} & =\frac{n_{2} R T}{V} \\
P_{3} & =n_{3} \frac{R T}{V} \\
P_{\text {total }} & =P_{1}+P_{2}+P_{3} \\
& =\left(n_{1}+n_{2}+n_{3}\right) \frac{R T}{V} \\
\frac{P_{1}}{P_{\text {total }}} & =\left(\frac{n_{1}}{n_{1}+n_{2}+n_{3}}\right) \frac{R T V}{R T V} \\
& =\frac{n_{1}}{n}=x_{1} \\
(n & \left.=n_{1}+n_{2}+n_{3}\right)
\end{aligned}
$$

Where

$$
\therefore \quad P_{1}=n_{1} P_{\text {total }}
$$

- $\quad p$ Total $=p 1+p 2+p 3+$ (at constant T, V)
where, p Total $=$ Total pressure exerted by the mixture of gases
$p_{1,} p_{2},---=$ partial pressures of gases, 1,2 ------ res.
- Gases are generally collected over water and therefore are moist.
$p_{\text {drygas }}=p$ Total - Aqueous Tension
- Aqueous Tension : Pressure exerted by saturated water vapour.
- \quad Total : Total pressure of the moist gas.
- Partial Pressure in terms of mole fraction
$p_{\mathrm{i}}=x_{\mathrm{i}} p_{\text {total }}$
where, $p_{\mathrm{i}}=$ Partial pressure of the $\mathrm{i}^{\text {th }}$ gas
$x_{i}=$ mole traction of the $i^{\text {th }}$ gas.

Different Pressure units and their relation

$$
\begin{aligned}
& 1 \mathrm{~Pa}=1 \mathrm{Nm}^{-2} \text { or } \\
& 1 \mathrm{kgm}^{-1} \mathrm{~s}^{-2} \\
& 1 \mathrm{bar}=10^{5} \mathrm{~Pa} \\
& 1 \mathrm{~atm}=101.325 \mathrm{kPa} \\
& 1 \mathrm{Torr}=(101325 / 760) \mathrm{Pa}=133.32 \mathrm{~Pa} \\
& 1 \mathrm{~mm} \mathrm{Hg}=1 \mathrm{Torr}=133.322 \mathrm{~Pa} \\
& 1 \text { Psi }=6.894 \mathrm{kPa} \\
& \text { *Psi }=\text { Pound persquare inch Standard pressure }=1 \text { bar Normal pressure }=1 \text { atom }
\end{aligned}
$$

Kinetic Molecular Theory of Gases : This theory helps us to understand the behavior of gases. This theory provides a microscopic model of gases.

Postulates:

- Gases consist of large number of very small identical particles (atoms or molecules) which are so for apart on the average that the actual volume of the molecules is negligible as compared to the empty space between them.
This explains the high compressibility of gases
- No force of attraction between the particles of a gas.
- Particles, within the container, are in ceaseless random motion during which they collide with each other and with the walls of the container.
- All the collisions are perfectly elastic i.e. total energy of molecules before and after the collision remains same. The energy may, however, be transferred from one molecule to the other on collision.
- Due to the bombardment of the molecules on the walls of the containing vessel, pressure is exerted by the gas on the walls of the containing vessel.
- Particlesofthegasmoveinstraightline(i.e.itobeysNewton'sfirstlaw ofmotion).
- At any particular time, different particles in the gas have different speeds and hence different kinetic energies.
- AverageK.E.ofthegasmoleculesisdirectly proportionaltotheabsolutetemperature.

Ideal gas and real gas

A gas which obeys ideal gas equation, $p V=n R T$ under all conditions of temperature and pressure. No gasobeysidealgasequation underall conditionsoftemperature and pressure.

Real gas

A gas which obey gas laws at low pressure and high temperature. All gases are real gases.

Causes of Deviation from Ideal Behaviour

Assumptions of Kinetic theory of gases which do not hold good in all conditions:

1. Theintermolecularforceofattractionbetweengaseousmoleculesisnegligible.
2. The volume occupied by the gas molecules is negligible in comparison to the total volume of the gas.
Compressibility Factor (Z) - Gives the extent to which real gas deviates from ideal behaviour.

$$
Z=\frac{p V}{n R T}
$$

- For1moleofgas, $Z=\frac{P V}{R T}$
- $\quad Z=1 \mathrm{~A}$ Gasisideal $; p V=n R T$
- $\quad Z=1$ A Gas is real ; $P V \neq n R T$
- $\quad Z<1 A G a s s h o w-v e d e v i a t i o n a n d i t i s m o r e c o m p r e s s i b l e t h a n i d e a l g a s ~ s$ (usually at low pressure).
- $\quad Z>1$ AGasshows+vedeviationanditislesscompressiblethanidealgas (usually at high pressure).
-

Plot : variation of Z with p for some gases

1. Plotof p vs V forideal and real gases

The variation of Z with different temperatures $T_{4}>T_{3}>T_{2}>T_{1}$

The deviationfromideal behaviorbecomeslessandlesswithincrease intemperature.

Boyle's temperature: Temperature at which a real gas obeys ideal gas equation over an appreciable range of pressure.
Compressibility Factor The most useful way of displaying this new law for real molecules is to plot the compressibility factor, Z :

For $\mathrm{n}=1$

$$
Z=P V / R T
$$

Ideal Gases have $\mathrm{Z}=1$
Significance of compressibility factor (Z)

$$
Z=\frac{p V_{\text {real }}}{n R T}
$$

fortheidealgas, $V=\frac{n R T}{\text { ideal }} \frac{n}{p}$

$$
Z=\frac{V_{\text {real }}}{\overline{V_{\text {ideal }}}}
$$

Z istheratio of actual volume of a gas tothe calculatedvolume of anequalamountofan ideal gas.

Van der Waal's equation

Volume Correction

* The actual volume free to move in is less because of particle size.
* More molecules will have more effect.
* Corrected volume $\mathrm{V}^{\prime}=\mathrm{V}$ - nb
* "b" is a constant that differs for each gas.

Pressure Correction

* Because the molecules are attracted to each other, the pressure on the container will be less than ideal.
* Pressure depends on the number of molecules per liter.
* Since two molecules interact, the effect must be squared.

$$
\left[\mathrm{P}+\frac{\mathrm{an}^{2}}{\mathrm{v}^{2}}\right](\mathrm{V}-\mathrm{nb})=\mathrm{nRT}
$$

Significance of van der Waals constants

- a:Itisameasureofmagnitudeofintermolecularattractiveforceswithinthegas.
- Greater the value of 'a', stronger are the intermolecular forces of attraction and gas can be liquefied more easily.
- $\quad b$: It is a measure of the effective size of the gas molecules. It is related to incompressible volume of the molecules

NOTE: "a" and "b" are determined by experiment.
"a" and "b" are different for each gas, bigger molecules
have larger "b" "a" depends on both size and polarity.

Value of the Gas Constant

The value of the gas constant ' R ' depends on the units used for pressure, volume and temperature.

- $\mathrm{R}=0.0821$ liter $\cdot \mathrm{atm} / \mathrm{mol} \cdot \mathrm{K}$
- $R=8.3145 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
- $R=8.2057 \mathrm{~m}^{3} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K}$
- $\mathrm{R}=62.3637 \mathrm{~L} \cdot$ Torr $/ \mathrm{mol} \cdot \mathrm{K}$ or $\mathrm{L} \cdot \mathrm{mmHg} / \mathrm{mol} \cdot \mathrm{K}$

Also refer to the given video link: https://youtu.be/Qw Jy1Ydfrk

