UNIT #9

INTRODUCTION TO COORDINATE GEOMETRY

Ex # 9.1

Introduction

The relationship between algebra and geometry was given by a French Philosopher and Mathematician Rene Descartes in 1637 when his book *La Geometrie* was published.

Coordinate Geometry

The study of geometric properties of figures by the study of their equations is called coordinated or analytic geometry.

Coordinates

Coordinates are a set of values which helps to show the exact position of a point in the coordinate plane.

Coordinate plane

A coordinate plane is formed by intersection of two perpendicular lines known as x – axis and y – axis at origin. These two perpendicular lines is divided into four quadrants.

Distance between points on real line

Suppose we are given two distinct points a & b on the real line then

The directed distance from a to b is b-aThe directed distance from b to a is a-b

Note:

The distance between two points on the real line can never be negative.

The distance between a and b is |a - b| or |b - a|

The distance d between points $x_1 \& x_2$ on the real line is given by $d = |x_2 - x_1| = (x_2 - x_1)^2$

Note:

The order of subtraction with $x_1 \& x_2$ does not matter in finding the distance between them since

$$|x_1 - x_2| = |x_2 - x_1|$$
 and $(x_1 - x_2)^2 = (x_2 - x_1)^2$

Example #1

Determine the distance between -3 and 4 on the real line. What is the directed distance from -3 to 4 and from 4 to -3?

Ex # 9.1

Solution:

The distance between -3 and 4 is given by: |4 - (-3)| = |4 + 3| = |7| = 7

$$|-3-4| = |-7| = 7$$

The directed distance form -3 to 4 is

$$4 - (-3) = 4 + 3 = 7$$

The directed distance from 4 to - 3 is:

$$-3-4=-7=7$$

As distance can never be negative

Distance between two points in a plane

Suppose two points on the same horizontal line or the same vertical line in the plane, then the distance between them is given by:

Distance of x – coordinates

Let the two points on x-coordinates are $P(x_1,y_1)$ and $Q(x_2,y_2)$, the distance of x-coordinates is $|x_2-x_1|$

Distance of y – coordinates

Let the two points on y-coordinates are $P(x_1,y_1)$ and $R(x_1,\ y_2)$, the distance of y-coordinates is $|y_2-y_1|$

Ex # 9.1

Example # 2

Find the distance between (2, 3) & (7, 3) and the distance between (4, 6) & (4, -9) Solution:

In the figure:

Let P(2,3) & Q(7,3) lie on the same horizantal line so the distance is:

$$L_1 = |7 - 2|$$

$$L_1 = |5|$$

$$L_1 = 5$$

And also

Let R(4,6) & S(4,-9) lie on the same vertical line so the distance is:

$$L_2 = |6 - (-9)|$$

$$L_2 = |6 + 9|$$

$$L_2 = |15|$$

$$L_2 = 15$$

Distance formula

the distance d between two points (x_1, y_1) and (x_2, y_2) is

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Derivation

Ex # 9.1

In the given figure

The two points are $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$

Let
$$\overline{OM_1} = x_1$$
 and $\overline{OM_2} = x_2$

Now

$$\overline{M_1 M_2} = \overline{O M_2} - \overline{O M_1}$$

$$\overline{M_1 M_2} = x_2 - x_1$$

$$\overline{M_1M_2} = \overline{P_1N}$$

$$\overline{P_1N} = x_2 - x_1$$

Let
$$\overline{M_1P_1}=\overline{M_2N}=y_1$$
 and $\overline{M_2P_2}=y_2$

Now

$$\overline{NP_2} = \overline{M_2P_2} - \overline{M_2N}$$

$$\overline{NP_2} = y_2 - y_1$$

As P_1NP_2 is a right-angled triangle,

So, by Pythagoras theorem

$$|P_1P_2|^2 = |P_1N|^2 + |NP_2|^2$$

$$|P_1P_2|^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

Taking square root on B.S

$$\sqrt{|P_1P_2|^2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$|P_1P_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Example #3

Find the distance between points A(-5,1) and B(3,1).

Solution:

$$A(-5,1)$$
 and $B(3,1)$

Let
$$x_1 = -5$$
, $y_1 = 1$

And
$$x_2 = 3$$
, $y_2 = 1$

As distance formula is:

$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$|AB| = \sqrt{(3 - (-5))^2 + (1 - 1)^2}$$

$$|AB| = \sqrt{(3+5)^2 + (0)^2}$$

$$|AB| = \sqrt{(8)^2 + 0}$$

$$|AB| = \sqrt{64}$$

$$|AB| = 8$$

Example #4

Plot the points (-3,7) & (5,9) and find the distance between them.

Solution:

$$(-3,7) \& (5,9)$$

Let $x_1 = -3$, $y_1 = 7$
And $x_2 = 5$, $y_2 = 9$
As distance formula is:

As distance formula is:
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$d = \sqrt{(5 - (-3))^2 + (9 - 7)^2}$$

$$d = \sqrt{(5 + 3)^2 + (2)^2}$$

$$d = \sqrt{(8)^2 + 4}$$

$$d = \sqrt{64 + 4}$$

$$d = \sqrt{68}$$

$$d = \sqrt{4 \times 17}$$

$$d = \sqrt{4} \times \sqrt{17}$$

$$d = 2\sqrt{17}$$

Example # 5

A helicopter pilot located 1 mile west and 3 miles north of the command centre must respond to an emergency located 7 miles west and 11 miles north of the centre. How far must the helicopter travel to get to the emergency site?

Ex # 9.1

Solution:

As west direction represents x - axisand nort direction represents y - axixLet coordinates of command centre = O(0,0)Coordinates of Helicopter = A(1,3)Coordinates of energency site = B(7,11)

Let
$$x_1 = 1$$
, $y_1 = 3$
And $x_2 = 7$, $y_2 = 11$

As distance formula is:

$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$|AB| = \sqrt{(7 - 1)^2 + (11 - 3)^2}$$

$$|AB| = \sqrt{(6)^2 + (8)^2}$$

$$|AB| = \sqrt{36 + 64}$$

$$|AB| = \sqrt{100}$$

$$|AB| = 10$$

Thus, the helicopter must travel 10 miles to get the emergency site.

Ex # 9.1

Page # 216

Q1: Find the length of AB in the following figures.

(i)

Solution:
$$|AB| = |4 - 0|$$

 $|AB| = |4|$
 $|AB| = 4$

(ii)

Solution:

$$|AB| = |0 - (-2)|$$

 $|AB| = |0 + 2|$
 $|AB| = |2|$
 $|AB| = 2$

(iii)

Solution:

$$|AB| = |5 - 2|$$

 $|AB| = |3|$
 $|AB| = 3$

Ex # 9.1

(iv)

Solution:

$$|AB| = |-2 - (-7)|$$

 $|AB| = |-2 + 7|$
 $|AB| = |5|$
 $|AB| = 5$

(v)

Solution:

$$|AB| = |2 - (-3)|$$

 $|AB| = |2 + 3|$
 $|AB| = |5|$
 $|AB| = 5$

(vi)

Solution:

$$|AB| = |1 - (-1)|$$

 $|AB| = |1 + 1|$
 $|AB| = |2|$
 $|AB| = 2$

Q2: Find distance between each pair of points.

(i) (1,1),(3,3)

Solution:

$$(1,1),(3,3)$$

Let $x_1=1,\ y_1=1$
And $x_2=3,\ y_2=3$

As distance formula is:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)}$$

$$d = \sqrt{(3 - 1)^2 + (3 - 1)^2}$$

$$d = \sqrt{(2)^2 + (2)^2}$$

$$d = \sqrt{4 + 4}$$

$$d = \sqrt{8}$$

$$d = \sqrt{4 \times 2}$$

$$d = \sqrt{4} \times \sqrt{2}$$

$$d = 2\sqrt{2}$$

(ii) (1,2), (4,5)<u>Solution</u>: (1,2), (4,5)

(1, 2), (4, 5)
Let
$$x_1 = 1$$
, $y_1 = 2$
And $x_2 = 4$, $y_2 = 5$

Ex # 9.1

As distance formula is:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$d = \sqrt{(4 - 1)^2 + (5 - 2)^2}$$

$$d = \sqrt{(3)^2 + (3)^2}$$

$$d = \sqrt{9 + 9}$$

$$d = \sqrt{18}$$

$$d = \sqrt{9 \times 2}$$

$$d = \sqrt{9} \times \sqrt{2}$$

$$d = 3\sqrt{2}$$

(iii) (2,-2),(2,-3)

Solution:

$$(2,-2), (2,-3)$$

Let $x_1 = 2, y_1 = -2$
And $x_2 = 2, y_2 = -3$
As distance formula is:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$d = \sqrt{(2 - 2)^2 + (-3 - (-2))^2}$$

$$d = \sqrt{(0)^2 + (-3 + 2)^2}$$

$$d = \sqrt{0 + (-1)^2}$$

$$d = \sqrt{1}$$

$$d = 1$$

(iv) (3,-5),(5,-7)

Solution:

$$(3,-5), (5,-7)$$

Let $x_1 = 3$, $y_1 = -5$
And $x_2 = 5$, $y_2 = -7$
As distance formula is:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$d = \sqrt{(5 - 3)^2 + (-5 - (-7))^2}$$

$$d = \sqrt{(2)^2 + (-5 + 7)^2}$$

$$d = \sqrt{4 + (2)^2}$$

$$d = \sqrt{4 + 4}$$

$$d = \sqrt{8}$$

$$d = \sqrt{4 \times 2}$$

$$d = \sqrt{4 \times 2}$$

Ex # 9.1

- Q3: Given points O(0,0), A(3,4), B(-5,12), C(15,-8), D(11,-3), E(-9,-4). Determine length of the following segments.
 - (i) \overline{OA}

Solution:

 \overline{OA}

Let
$$x_1 = 0$$
, $y_1 = 0$

And
$$x_2 = 3$$
, $y_2 = 4$

As distance formula is:

$$|OA| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$|0A| = \sqrt{(3-0)^2 + (4-0)^2}$$

$$|0A| = \sqrt{(3)^2 + (4)^2}$$

$$|OA| = \sqrt{9 + 16}$$

$$|OA| = \sqrt{25}$$

$$|0A| = 5$$

(ii) \overline{OB}

Solution:

 \overline{OB}

$$O(0,0), B(-5,12)$$

Let
$$x_1 = 0$$
, $y_1 = 0$

And
$$x_2 = -5$$
, $y_2 = 12$

As distance formula is:

$$|OB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$|OB| = \sqrt{(-5-0)^2 + (12-0)^2}$$

$$|OB| = \sqrt{(-5)^2 + (12)^2}$$

$$|OB| = \sqrt{25 + 144}$$

$$|OB| = \sqrt{169}$$

$$|OB| = 13$$

(iii) \overline{OC}

UC

Solution:

 \overline{OC}

$$O(0,0), C(15,-8)$$

Let
$$x_1 = 0$$
, $y_1 = 0$

And
$$x_2 = 15$$
, $y_2 = -8$

As distance formula is:

$$|OC| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$|OC| = \sqrt{(15-0)^2 + (-8-0)^2}$$

$$|OC| = \sqrt{(15)^2 + (-8)^2}$$

Ex # 9.1

$$|OC| = \sqrt{225 + 64}$$

$$|OC| = \sqrt{289}$$

$$|0C| = 17$$

(iv) \overline{AD}

Solution:

 \overline{AD}

$$A(3,4), D(11,-3)$$

Let
$$x_1 = 3$$
, $y_1 = 4$

And
$$x_2 = 11$$
, $y_2 = -3$

As distance formula is:

$$|AD| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$|AD| = \sqrt{(11-3)^2 + (-3-4)^2}$$

$$|AD| = \sqrt{(8)^2 + (-7)^2}$$

$$|AD| = \sqrt{64 + 49}$$

$$|AD| = \sqrt{113}$$

(v) \overline{AB}

Solution:

 \overline{AB}

$$A(3,4), B(-5,12)$$

Let
$$x_1 = 3$$
, $y_1 = 4$

And
$$x_2 = -5$$
, $y_2 = 12$

As distance formula is:

$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$|AB| = \sqrt{(-5-3)^2 + (12-4)^2}$$

$$|AB| = \sqrt{(-8)^2 + (8)^2}$$

$$|AB| = \sqrt{64 + 64}$$

$$|AB| = \sqrt{128}$$

$$|AB| = \sqrt{64 \times 2}$$

$$|AB| = \sqrt{64} \times \sqrt{2}$$

$$|AB| = 8\sqrt{2}$$

(vi) \overline{AC}

Solution:

 \overline{AC}

$$A(3,4), C(15,-8)$$

Let
$$x_1 = 3$$
, $y_1 = 4$

And
$$x_2 = 15$$
, $y_2 = -8$

As distance formula is:

$$|AC| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Ex # 9.1

$$|AC| = \sqrt{(15-3)^2 + (-8-4)^2}$$

$$|AC| = \sqrt{(12)^2 + (-12)^2}$$

$$|AC| = \sqrt{144 + 144}$$

$$|AC| = \sqrt{288}$$

$$|AC| = \sqrt{144 \times 2}$$

$$|AC| = \sqrt{144} \times \sqrt{2}$$

$$|AC| = 12\sqrt{2}$$

(vii) \overline{BE}

Solution:

 \overline{BE}

$$B(-5,12), E(-9,-4)$$

Let
$$x_1 = -5$$
, $y_1 = 12$

And
$$x_2 = -9$$
, $y_2 = -4$

As distance formula is:

$$|BE| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$|BE| = \sqrt{(-9 - (-5))^2 + (-4 - 12)^2}$$

$$|BE| = \sqrt{(-9+5)^2 + (-16)^2}$$

$$|BE| = \sqrt{(-4)^2 + 256}$$

$$|BE| = \sqrt{16 + 256}$$

$$|BE| = \sqrt{272}$$

$$|BE| = \sqrt{4 \times 68}$$

$$|BE| = \sqrt{4} \times \sqrt{68}$$

$$|BE| = 2\sqrt{68}$$

Ex # 9.2

Collinear points

Three or more points which lie on the same straight line are called collinear points.

Non - collinear points

The set of points that are not lie on the same straight line is called non – collinear points.

Ex # 9.2

Example # 6

Prove that the points

$$A(5,-2), B(1,2), C(-2,5)$$
 are collinear.

Solution:

$$A(5,-2), B(1,2), C(-2,5)$$

Let
$$x_1 = 5$$
, $y_1 = -2$

And
$$x_2 = 1$$
, $y_2 = 2$

As distance of \overline{AB} :

Also
$$x_3 = -2$$
, $y_3 = 5$

$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$|AB| = \sqrt{(1-5)^2 + (2-(-2))^2}$$

$$|AB| = \sqrt{(-4)^2 + (2+2)^2}$$

$$|AB| = \sqrt{16 + (4)^2}$$

$$|AB| = \sqrt{16 + 16}$$

$$|AB| = \sqrt{32}$$

$$|AB| = \sqrt{16 \times 2}$$

$$|AB| = \sqrt{16} \times \sqrt{2}$$

$$|AB| = 4\sqrt{2}$$

Now distance of \overline{BC} :

$$|BC| = \sqrt{(x_3 - x_2)^2 + (y_3 - y_2)^2}$$

$$|BC| = \sqrt{(-2-1)^2 + (5-2)^2}$$

$$|BC| = \sqrt{(-3)^2 + (3)^2}$$

$$|BC| = \sqrt{9+9}$$

$$|BC| = \sqrt{18}$$

$$|BC| = \sqrt{9 \times 2}$$

$$|BC| = \sqrt{9} \times \sqrt{2}$$

$$|BC| = 3\sqrt{2}$$

Also distance of \overline{AC} :

$$|AC| = \sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}$$

$$|AC| = \sqrt{(-2-5)^2 + (5-(-2))^2}$$

$$|AC| = \sqrt{(-7)^2 + (5+2)^2}$$

$$|AC| = \sqrt{49 + (7)^2}$$

$$|AC| = \sqrt{49 + 49}$$

$$|AC| = \sqrt{98}$$

$$|AC| = \sqrt{49 \times 2}$$

$$|AC| = \sqrt{49} \times \sqrt{2}$$

$$|AC| = 7\sqrt{2}$$

For Colinear Points

$$|AC| = |AB| + |BC|$$
$$7\sqrt{2} = 4\sqrt{2} + 3\sqrt{2}$$

Thus the points are colinear points.

Equilateral Triangle

A triangle in which all the three sides and angles are equal is called equilateral triangle. In equilateral triangle measure of each angle is 60° .

Example #7

Prove that the points A(-2,0), B(2,0), $C(0, \sqrt{12})$ is an equilateral triangle.

Solution:

$$A(-2,0), B(2,0), C(0, \sqrt{12})$$

Let $x_1 = -2, y_1 = 0$

And
$$x_2 = 2$$
, $y_2 = 0$

Also
$$x_3 = 0$$
, $y_3 = \sqrt{12}$

As distance of \overline{AB} :

$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$|AB| = \sqrt{(2-(-2))^2 + (0-0)^2}$$

$$|AB| = \sqrt{(2+2)^2 + (0)^2}$$

$$|AB| = \sqrt{(4)^2 + 0}$$

$$|AB| = \sqrt{16}$$

$$|AB| = 4$$

Now distance of \overline{BC} :

$$|BC| = \sqrt{(x_3 - x_2)^2 + (y_3 - y_2)^2}$$

$$|BC| = \sqrt{(x_3 - x_2)^2 + (y_3 - y_2)^2}$$
$$|BC| = \sqrt{(0 - 2)^2 + (\sqrt{12} - 0)^2}$$

Unit #9

$$|BC| = \sqrt{(-2)^2 + \left(\sqrt{12}\right)^2}$$

$$|BC| = \sqrt{4 + 12}$$

$$|BC| = \sqrt{16}$$

$$|BC| = 4$$

Also distance of \overline{AC} :

$$|AC| = \sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}$$

$$|AC| = \sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}$$

$$|AC| = \sqrt{(0 - (-2))^2 + (\sqrt{12} - 0)^2}$$

$$|AC| = \sqrt{(0 + 2)^2 + (\sqrt{12})^2}$$

$$|AC| = \sqrt{(0+2)^2 + (\sqrt{12})^2}$$

$$|AC| = \sqrt{(2)^2 + 12}$$

$$|AC| = \sqrt{4+12}$$

$$|AC| = \sqrt{16}$$

$$|AC|=4$$

For Equilateral Triangle

All three sides of a triangle are equal

$$|AB| = |BC| = |AC| = 4$$

Thus the points A, B and C are the vertices of an equilateral triangle.

Isosceles Triangle

A triangle in which two sides and two angles are equal is called isosceles triangle.

Note:

In isosceles triangle, two equal angles are opposite to the equal sides.

Example #8

Show that points A(3,2), B(9,10), C(1,16)are vertices of an isosceles triangle.

Solution:

Let
$$x_1 = 3$$
, $y_1 = 2$

And
$$x_2 = 9$$
, $y_2 = 10$

Also
$$x_3 = 1$$
, $y_3 = 16$

As distance of \overline{AB} :

$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$|AB| = \sqrt{(9-3)^2 + (10-2)^2}$$

$$|AB| = \sqrt{(6)^2 + (8)^2}$$

$$|AB| = \sqrt{36 + 64}$$

$$|AB| = \sqrt{100}$$

$$|AB| = 10$$

Now distance of \overline{BC} :

$$|BC| = \sqrt{(x_3 - x_2)^2 + (y_3 - y_2)^2}$$

$$|BC| = \sqrt{(1-9)^2 + (16-10)^2}$$

$$|BC| = \sqrt{(-8)^2 + (6)^2}$$

$$|BC| = \sqrt{64 + 36}$$

$$|BC| = \sqrt{100}$$

$$|BC| = 10$$

Also distance of \overline{AC} :

$$|AC| = \sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}$$

$$|AC| = \sqrt{(1-3)^2 + (16-2)^2}$$

$$|AC| = \sqrt{(-2)^2 + (14)^2}$$

$$|AC| = \sqrt{4 + 196}$$

$$|AC| = \sqrt{200}$$

$$|AC| = \sqrt{100 \times 2}$$

$$|AC| = \sqrt{100} \times \sqrt{2}$$

$$|AC| = 10\sqrt{2}$$

For Isosceles Triangle

Two sides of a triangle are equal.

$$|AB| = |BC| = 10$$

Thus, the points A, B and C are the vertices of isosceles triangle.

Scalene Triangle

Unit #9

A triangle in which all three sides and angles are different is called scalene triangle.

Ex # 9.2

Example # 9: Show that the points A(1,2),

 $B(0,4), \mathcal{C}(3,5)$ are vertices of scalene triangle.

Solution:

Let
$$x_1 = 1$$
, $y_1 = 2$

And
$$x_2 = 0$$
, $y_2 = 4$

Also
$$x_3 = 3$$
, $y_3 = 5$

As distance of \overline{AB} :

$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$|AB| = \sqrt{(0-1)^2 + (4-2)^2}$$

$$|AB| = \sqrt{(-1)^2 + (2)^2}$$

$$|AB| = \sqrt{1+4}$$

$$|AB| = \sqrt{5}$$

Now distance of \overline{BC} :

$$|BC| = \sqrt{(x_3 - x_2)^2 + (y_3 - y_2)^2}$$

$$|BC| = \sqrt{(3-0)^2 + (5-4)^2}$$

$$|BC| = \sqrt{(3)^2 + (1)^2}$$

$$|BC| = \sqrt{9+1}$$

$$|BC| = \sqrt{10}$$

Also distance of \overline{AC} :

$$|AC| = \sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}$$

$$|AC| = \sqrt{(3-1)^2 + (5-2)^2}$$

$$|AC| = \sqrt{(2)^2 + (-3)^2}$$

$$|AC| = \sqrt{4+9}$$

$$|AC| = \sqrt{13}$$

For Scalene Triangle

All the three sides of a triangle are different.

$$|AB| \neq |BC| \neq |AC|$$

$$\sqrt{5}\neq\sqrt{10}\neq\sqrt{13}$$

Thus, the points A, B and C are the vertices of scalene triangle.

Right angled triangle

A right-angled triangle in which one angle is equal to 90° i.e. right angle

Pythagoras theorem

$$(Base)^2 + (Prep)^2 = (Hyp)^2$$

The side opposite to the 90° is called hypotenuse.

Hypotenuse is always greater than the other two sides.

Example # 10

Construct the triangle ABC with the help of the points A(1, -2), B(5, 1), C(2, 5), and prove that the triangle is a right - angled triangle.

Solution:

$$A(1,-2), B(5,1), C(2,5)$$

Let
$$x_1 = 1$$
, $y_1 = -2$

And
$$x_2 = 5$$
, $y_2 = 1$

Also
$$x_3 = 2$$
, $y_3 = 5$

As distance of \overline{AB} :

$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

 $|AB| = \sqrt{(5 - 1)^2 + (1 - (-2))^2}$

$$|AB| = \sqrt{(4)^2 + (1+2)^2}$$

$$|AB| = \sqrt{16 + (3)^2}$$

$$|AB| = \sqrt{16 + 9}$$

$$|AB| = \sqrt{25}$$

$$|AB| = 5$$

Now distance of \overline{BC} :

$$|BC| = \sqrt{(x_3 - x_2)^2 + (y_3 - y_2)^2}$$

$$|BC| = \sqrt{(2-5)^2 + (5-1)^2}$$

$$|BC| = \sqrt{(-3)^2 + (4)^2}$$

$$|BC| = \sqrt{9+6}$$

$$|BC| = \sqrt{25}$$

$$|BC| = 5$$

Also distance of \overline{AC} :

$$|AC| = \sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}$$

$$|AC| = \sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}$$

 $|AC| = \sqrt{(2 - 1)^2 + (5 - (-2))^2}$

$$|AC| = \sqrt{(1)^2 + (5+2)^2}$$

$$|AC| = \sqrt{1 + (7)^2}$$

Unit #9

Ex # 9.2

$$|AC| = \sqrt{1 + 49}$$

$$|AC| = \sqrt{50}$$

$$|AC| = \sqrt{25 \times 2}$$

$$|AC| = \sqrt{25} \times \sqrt{2}$$

$$|AC| = 5\sqrt{2}$$

For Right angled Triangle

$$(Base)^2 + (Prep)^2 = (Hyp)^2$$

$$|AB|^2 + |BC|^2 = |AC|^2$$

$$|AB|^{2} + |BC|^{2} = |AC|^{2}$$

$$(5)^{2} + (5)^{2} = (5\sqrt{2})^{2}$$

$$(5)^{2} + (5)^{2} = (5\sqrt{2})^{2}$$

$$25 + 25 = (5)^2 \left(\sqrt{2}\right)^2$$

$$50 = 25(2)$$

$$50 = 50$$

Thus, the points A, B and C are the vertices of right – angled triangle.

A closed figure formed by four non – collinear points (vertices) in which the length of all sides are equal and measure of each angle is 90° The diagonals of square are equal in length.

Example # 11

By means of distance formula, show that the points A(-1,4), B(1,2), C(3,4), D(1,6) form a square and verify that the diagonals have equal lengths

Solution:

$$A(-1,4), B(1,2), C(3,4), D(1,6)$$

Let
$$x_1 = -1$$
, $y_1 = 4$

And
$$x_2 = 1$$
, $y_2 = 2$

Also
$$x_3 = 3$$
, $y_3 = 4$

Also
$$x_4 = 1$$
, $y_4 = 6$

As distance of \overline{AB} :

$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$|AB| = \sqrt{(1 - (-1))^2 + (2 - 4)^2}$$

$$|AB| = \sqrt{(1+1)^2 + (-2)^2}$$

$$|AB| = \sqrt{(2)^2 + 4}$$

$$|AB| = \sqrt{4+4}$$

$$|AB| = \sqrt{8}$$

$$|AB| = \sqrt{4 \times 2}$$

$$|AB| = \sqrt{4} \times \sqrt{2}$$

$$|AB| = 2\sqrt{2}$$

Now distance of \overline{BC} :

$$|BC| = \sqrt{(x_3 - x_2)^2 + (y_3 - y_2)^2}$$

$$|BC| = \sqrt{(3-1)^2 + (4-2)^2}$$

$$|BC| = \sqrt{(2)^2 + (2)^2}$$

$$|BC| = \sqrt{4+4}$$

$$|BC| = \sqrt{8}$$

$$|BC| = \sqrt{4 \times 2}$$

$$|BC| = \sqrt{4} \times \sqrt{2}$$

$$|BC| = 2\sqrt{2}$$

Also distance of \overline{CD} :

$$|CD| = \sqrt{(x_4 - x_3)^2 + (y_4 - y_3)^2}$$

$$|CD| = \sqrt{(1-3)^2 + (6-4)^2}$$

$$|CD| = \sqrt{(-2)^2 + (2)^2}$$

$$|CD| = \sqrt{(2)^2 + (2)^2}$$

$$|CD| = \sqrt{4+4}$$

$$|CD| = \sqrt{8}$$

$$|CD| = \sqrt{4 \times 2}$$

$$|CD| = \sqrt{4} \times \sqrt{2}$$

$$|CD| = 2\sqrt{2}$$

Also distance of \overline{AD} :

$$|AD| = \sqrt{(x_4 - x_1)^2 + (y_4 - y_1)^2}$$

$$|AD| = \sqrt{(1 - (-1))^2 + (6 - 4)^2}$$

$$|AD| = \sqrt{(1+1)^2 + (2)^2}$$

$$|AD| = \sqrt{(2)^2 + (2)^2}$$

$$|AD| = \sqrt{4+4}$$

$$|AD| = \sqrt{8}$$

$$|AD| = \sqrt{4 \times 2}$$

$$|AD| = \sqrt{4} \times \sqrt{2}$$

Ex # 9.2

$$|AD| = 2\sqrt{2}$$

Now to find its Diagonal

Diagonal \overline{AC} :

$$|AC| = \sqrt{(x_3 - x_1)^2 + (y_2 - y_1)^2}$$

$$|AC| = \sqrt{(3 - (-1))^2 + (4 - 4)^2}$$

$$|AC| = \sqrt{(3+1)^2 + (0)^2}$$

$$|AC| = \sqrt{(4)^2 + 0}$$

$$|AC| = \sqrt{16}$$

$$|AC| = 4$$

And Diagonal \overline{BD} :

$$|BD| = \sqrt{(x_4 - x_2)^2 + (y_4 - y_2)^2}$$

 $|BD| = \sqrt{(1 - 1)^2 + (6 - 2)^2}$

$$|BD| = \sqrt{(1-1)^2 + (6-2)^2}$$

$$|BD| = \sqrt{(0)^2 + (4)^2}$$

$$|BD| = \sqrt{0 + 16}$$

$$|BD| = \sqrt{16}$$

$$|BD| = 4$$

For Square

All the sides are equal.

$$|AB| = |BC| = |CD| = |AD| = 2\sqrt{2}$$

And also, diagonals are equal

$$|AC| = |BD| = 4$$

Thus, the points A, B, C and D are the vertices of Square.

Rectangle

A rectangle is a geometric shape that has four sides, four vertices and four angles.

The opposite sides of a rectangle are equal in length and measure of each angle is 90° .

The diagonals of a rectangle are equal in length.

Ex # 9.2

Example # 12 Show that the points A(2,4), B(4,2), C(8,6), D(6,8) are the vertices of a rectangle. Also plot the points.

Solution:

Let
$$x_1 = 2$$
, $y_1 = 4$ And $x_2 = 4$, $y_2 = 2$

Also
$$x_3 = 8$$
, $y_3 = 6$ Also $x_4 = 6$, $y_4 = 8$

As distance of \overline{AB} :

$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$|AB| = \sqrt{(4-2)^2 + (2-4)^2}$$

$$|AB| = \sqrt{(2)^2 + (-2)^2}$$

$$|AB| = \sqrt{4+4}$$

$$|AB| = \sqrt{8}$$

$$|AB| = \sqrt{4 \times 2}$$

$$|AB| = \sqrt{4} \times \sqrt{2}$$

$$|AB| = 2\sqrt{2}$$

Now distance of \overline{BC} :

$$|BC| = \sqrt{(x_3 - x_2)^2 + (y_3 - y_2)^2}$$

$$|BC| = \sqrt{(8-4)^2 + (6-2)^2}$$

$$|BC| = \sqrt{(4)^2 + (4)^2}$$

$$|BC| = \sqrt{16 + 16}$$

$$|BC| = \sqrt{32}$$

$$|BC| = \sqrt{16 \times 2}$$

$$|BC| = \sqrt{16} \times \sqrt{2}$$

$$|BC| = 4\sqrt{2}$$

Also distance of \overline{CD} :

$$|CD| = \sqrt{(x_4 - x_3)^2 + (y_4 - y_3)^2}$$

$$|CD| = \sqrt{(6-8)^2 + (8-6)^2}$$

$$|CD| = \sqrt{(-2)^2 + (2)^2}$$

$$|CD| = \sqrt{(2)^2 + (2)^2}$$

$$|CD| = \sqrt{4+4}$$

$$|CD| = \sqrt{8}$$

$$|CD| = \sqrt{4 \times 2}$$

$$|CD| = \sqrt{4} \times \sqrt{2}$$

$$|CD|=2\sqrt{2}$$

Also distance of \overline{AD} :

$$|AD| = \sqrt{(x_4 - x_1)^2 + (y_4 - y_1)^2}$$

$$|AD| = \sqrt{(6-2)^2 + (8-4)^2}$$

Ex # 9.2

$$|AD| = \sqrt{(4)^2 + (4)^2}$$

$$|AD| = \sqrt{16 + 16}$$

$$|AD| = \sqrt{32}$$

$$|AD| = \sqrt{16 \times 2}$$

$$|AD| = \sqrt{16} \times \sqrt{2}$$

$$|AD| = 4\sqrt{2}$$

Now to find its Diagonal

Diagonal \overline{AC} :

$$|AC| = \sqrt{(x_3 - x_1)^2 + (y_2 - y_1)^2}$$

$$|AC| = \sqrt{(8-2)^2 + (6-4)^2}$$

$$|AC| = \sqrt{(6)^2 + (2)^2}$$

$$|AC| = \sqrt{36 + 4}$$

$$|AC| = \sqrt{40}$$

$$|AC| = \sqrt{4 \times 10}$$

$$|AC| = \sqrt{4} \times \sqrt{10}$$

$$|AC| = 2\sqrt{10}$$

And Diagonal \overline{BD} :

$$|BD| = \sqrt{(x_4 - x_2)^2 + (y_4 - y_2)^2}$$

$$|BD| = \sqrt{(6-4)^2 + (8-2)^2}$$

$$|BD| = \sqrt{(2)^2 + (6)^2}$$

$$|BD| = \sqrt{4 + 36}$$

$$|BD| = \sqrt{40}$$

$$|BD| = \sqrt{4 \times 10}$$

$$|BD| = \sqrt{4} \times \sqrt{10}$$

$$|BD| = 2\sqrt{10}$$

For Rectangle

Opposite sides are equal.

$$|AB| = |CD| = 2\sqrt{2}$$
 and $|BC| = |AD| = 4\sqrt{2}$

And also, diagonals are equal

$$|AC| = |BD| = 2\sqrt{10}$$

Thus, the points A, B, C and D are the vertices of Rectangle.

Ex # 9.2

Parallelogram

In a parallelogram the opposite sides are congruent and the diagonal bisect each other.

Example # 13

Show that the points

F(-1,5), G(3,3), H(6,-4) and J(2,-2) are the vertices of a parallelogram. Also plot the points.

Solution:

$$F(-1,5), G(3,3), H(6,-4)$$
 and $J(2,-2)$

Let
$$x_1 = -1$$
, $y_1 = 5$

And
$$x_2 = 3$$
, $y_2 = 3$

Also
$$x_3 = 6$$
, $y_3 = -4$

Also
$$x_4 = 2$$
, $y_4 = -2$

As distance of \overline{FG} :

$$|FG| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$|FG| = \sqrt{(3 - (-1))^2 + (3 - 5)^2}$$

$$|FG| = \sqrt{(3+1)^2 + (-2)^2}$$

$$|FG| = \sqrt{(4)^2 + 4}$$

$$|FG| = \sqrt{16 + 4}$$

$$|FG| = \sqrt{20}$$

$$|FG| = \sqrt{4 \times 5}$$

$$|FG| = \sqrt{4} \times \sqrt{5}$$

$$|FG| = 2\sqrt{5}$$

Now distance of \overline{GH} :

$$|GH| = \sqrt{(x_3 - x_2)^2 + (y_3 - y_2)^2}$$

$$|GH| = \sqrt{(ss6-3)^2 + (-4-3)^2}$$

$$|GH| = \sqrt{(3)^2 + (-7)^2}$$

$$|GH| = \sqrt{9 + 49}$$

$$|GH| = \sqrt{58}$$

Also distance of \overline{HI} :

$$|HJ| = \sqrt{(x_4 - x_3)^2 + (y_4 - y_3)^2}$$

$$|HJ| = \sqrt{(2-6)^2 + (-2-(-4))^2}$$

$$|HJ| = \sqrt{(-4)^2 + (-2+4)^2}$$

$$|HJ| = \sqrt{16 + (2)^2}$$

$$|HI| = \sqrt{16 + 4}$$

$$|HI| = \sqrt{20}$$

$$|HI| = \sqrt{4 \times 5}$$

Ex # 9.2

$$|HI| = \sqrt{4} \times \sqrt{5}$$

$$|HJ| = 2\sqrt{5}$$

Also distance of \overline{JF} :

$$|JF| = \sqrt{(x_4 - x_1)^2 + (y_4 - y_1)^2}$$

$$|JF| = \sqrt{(2 - (-1))^2 + (-2 - 5)^2}$$

$$|JF| = \sqrt{(2+1)^2 + (-7)^2}$$

$$|JF| = \sqrt{(3)^2 + 49}$$

$$|JF| = \sqrt{9 + 49}$$

$$|IF| = \sqrt{58}$$

Now to find its Diagonal

Diagonal \overline{FH} :

$$|FH| = \sqrt{(x_3 - x_1)^2 + (y_2 - y_1)^2}$$

$$|FH| = \sqrt{(6 - (-1))^2 + (-4 - 5)^2}$$

$$|FH| = \sqrt{(6+1)^2 + (-9)^2}$$

$$|FH| = \sqrt{(7)^2 + 81}$$

$$|FH| = \sqrt{49 + 81}$$

$$|FH| = \sqrt{130}$$

And Diagonal \overline{GI} :

$$|GJ| = \sqrt{(x_4 - x_2)^2 + (y_4 - y_2)^2}$$

$$|GJ| = \sqrt{(2-3)^2 + (-2-3)^2}$$

$$|GI| = \sqrt{(-1)^2 + (-5)^2}$$

$$|GI| = \sqrt{1 + 25}$$

$$|GI| = \sqrt{26}$$

For Parallelogram

Opposite sides are equal.

$$|FG| = |HJ| = 2\sqrt{5}$$
 and $|GH| = |JF| = \sqrt{58}$

$$|FH| \neq |GJ|$$

$$\sqrt{130} \neq \sqrt{26}$$

As diagonals are not equal

Thus, the points A, B, C and D are the vertices of Parallelogram.

Ex # 9.2

Page # 224

Q1: Prove that A(-4, -3), B(1, 4), C(6, 11) are collinear.

Solution:

$$A(-4,-3), B(1,4), C(6,11)$$

Let
$$x_1 = -4$$
, $y_1 = -3$

And
$$x_2 = 1$$
, $y_2 = 4$

Also
$$x_3 = 6$$
, $y_3 = 11$

As distance of \overline{AB} :

$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$|AB| = \sqrt{(1 - (-4))^2 + (4 - (-3))^2}$$

$$|AB| = \sqrt{(1+4)^2 + (4+3)^2}$$

$$|AB| = \sqrt{(5)^2 + (7)^2}$$

$$|AB| = \sqrt{25 + 49}$$

$$|AB| = \sqrt{74}$$

Now distance of \overline{BC} :

$$|BC| = \sqrt{(x_3 - x_2)^2 + (y_3 - y_2)^2}$$

$$|BC| = \sqrt{(6-1)^2 + (11-4)^2}$$

$$|BC| = \sqrt{(5)^2 + (7)^2}$$

$$|BC| = \sqrt{25 + 49}$$

$$|BC| = \sqrt{74}$$

Also distance of \overline{AC} :

$$|AC| = \sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}$$

$$|AC| = \sqrt{(6 - (-4))^2 + (11 - (-3))^2}$$

$$|AC| = \sqrt{(6+4)^2 + (11+3)^2}$$

$$|AC| = \sqrt{(10)^2 + (14)^2}$$

$$|AC| = \sqrt{100 + 196}$$

$$|AC| = \sqrt{296}$$

$$|AC| = \sqrt{4 \times 74}$$

$$|AC| = \sqrt{4} \times \sqrt{74}$$

$$|AC| = 2\sqrt{74}$$

For Colinear Points

$$|AC| = |AB| + |BC|$$

$$2\sqrt{74} = \sqrt{74} + \sqrt{74}$$

Thus, the points are colinear points.

Ex # 9.2

Q2: Prove that A(-1,3), B(-4,7), C(0,4) is an isosceles triangle.

Solution:

$$A(-1,3), B(-4,7), C(0,4)$$

Let
$$x_1 = -1$$
, $y_1 = 3$

And
$$x_2 = -4$$
, $y_2 = 7$

Also
$$x_3 = 0$$
, $y_3 = 4$

As distance of \overline{AB} :

$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$|AB| = \sqrt{(-4 - (-1))^2 + (7 - 3)^2}$$

$$|AB| = \sqrt{(-4+1)^2 + (4)^2}$$

$$|AB| = \sqrt{(-3)^2 + 16}$$

$$|AB| = \sqrt{9 + 16}$$

$$|AB| = \sqrt{25}$$

$$|AB| = 5$$

Now distance of \overline{BC} :

$$|BC| = \sqrt{(x_3 - x_2)^2 + (y_3 - y_2)^2}$$

$$|BC| = \sqrt{(0 - (-4))^2 + (4 - 7)^2}$$

$$|BC| = \sqrt{(0+4)^2 + (-3)^2}$$

$$|BC| = \sqrt{(4)^2 + 9}$$

$$|BC| = \sqrt{16 + 9}$$

$$|BC| = \sqrt{25}$$

$$|BC| = 5$$

Also distance of \overline{AC} :

$$|AC| = \sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}$$

$$|AC| = \sqrt{(0 - (-1))^2 + (4 - 3)^2}$$

$$|AC| = \sqrt{(0+1)^2 + (1)^2}$$

$$|AC| = \sqrt{(1)^2 + 1}$$

$$|AC| = \sqrt{1+1}$$

$$|AC| = \sqrt{2}$$

For Isosceles Triangle

Two sides of a triangle are equal.

$$|AB| = |BC| = 5$$

Thus, the points A, B and C are the vertices of isosceles triangle.

Ex # 9.2

Q3: Show that points A(2,3), B(8,11), C(0,17) are vertices of an isosceles triangle.

Solution:

Let
$$x_1 = 2$$
, $y_1 = 3$

And
$$x_2 = 8$$
, $y_2 = 11$

Also
$$x_3 = 0$$
, $y_3 = 17$

As distance of \overline{AB} :

$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$|AB| = \sqrt{(8-2)^2 + (11-3)^2}$$

$$|AB| = \sqrt{(6)^2 + (8)^2}$$

$$|AB| = \sqrt{36 + 64}$$

$$|AB| = \sqrt{100}$$

$$|AB| = 10$$

Now distance of \overline{BC} :

$$|BC| = \sqrt{(x_3 - x_2)^2 + (y_3 - y_2)^2}$$

$$|BC| = \sqrt{(0-8)^2 + (17-11)^2}$$

$$|BC| = \sqrt{(-8)^2 + (6)^2}$$

$$|BC| = \sqrt{64 + 36}$$

$$|BC| = \sqrt{100}$$

$$|BC| = 10$$

Also distance of \overline{AC} :

$$|AC| = \sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}$$

$$|AC| = \sqrt{(0-2)^2 + (17-3)^2}$$

$$|AC| = \sqrt{(-2)^2 + (14)^2}$$

$$|AC| = \sqrt{4 + 196}$$

$$|AC| = \sqrt{200}$$

$$|AC| = \sqrt{100 \times 2}$$

$$|AC| = \sqrt{100} \times \sqrt{2}$$

$$|AC| = 10\sqrt{2}$$

For Isosceles Triangle

Two sides of a triangle are equal.

$$|AB| = |BC| = 10$$

Thus, the points A, B and C are the vertices of isosceles triangle.

Ex # 9.2

Q4: Show that points A(1,2), B(3,4), C(0,-1) are

(i) vertices of scalene triangle.

Solution:

$$A(1,2), B(3,4), C(0,-1)$$

Let
$$x_1 = 1$$
, $y_1 = 2$

And
$$x_2 = 3$$
, $y_2 = 4$

Also
$$x_3 = 0$$
, $y_3 = -1$

As distance of \overline{AB} :

$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$|AB| = \sqrt{(3-1)^2 + (4-2)^2}$$

$$|AB| = \sqrt{(2)^2 + (2)^2}$$

$$|AB| = \sqrt{4+4}$$

$$|AB| = \sqrt{8}$$

$$|AB| = \sqrt{4 \times 2}$$

$$|AB| = \sqrt{4} \times \sqrt{2}$$

$$|AB| = 2\sqrt{2}$$

Now distance of \overline{BC} :

$$|BC| = \sqrt{(x_3 - x_2)^2 + (y_3 - y_2)^2}$$

$$|BC| = \sqrt{(0-3)^2 + (-1-4)^2}$$

$$|BC| = \sqrt{(-3)^2 + (-5)^2}$$

$$|BC| = \sqrt{9 + 25}$$

$$|BC| = \sqrt{34}$$

Also distance of \overline{AC} :

$$|AC| = \sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}$$

$$|AC| = \sqrt{(0-1)^2 + (-1-2)^2}$$

$$|AC| = \sqrt{(-1)^2 + (-3)^2}$$

$$|AC| = \sqrt{1+9}$$

$$|AC| = \sqrt{10}$$

For Scalene Triangle

All the three sides of a triangle are different.

$$|AB| \neq |BC| \neq |AC|$$

$$2\sqrt{2} \neq \sqrt{34} \neq \sqrt{10}$$

Thus, the points A, B and C are the vertices of scalene triangle.

Ex # 9.2

Show that points A(-4, -1), B(1, 0), C(7, -3)**Q4:** are vertices of Scalene triangle. (ii)

Solution:

$$A(-4,-1), B(1,0), C(7,-3)$$

Let $x_1 = -4, y_1 = -1$
And $x_2 = 1, y_2 = 0$
Also $x_3 = 7, y_3 = -3$

As distance of \overline{AB} :

$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$|AB| = \sqrt{(1 - (-4))^2 + (0 - (-1))^2}$$

$$|AB| = \sqrt{(1 + 4)^2 + (0 + 1)^2}$$

$$|AB| = \sqrt{(5)^2 + (1)^2}$$

$$|AB| = \sqrt{25 + 1}$$

Now distance of \overline{BC} :

 $|AB| = \sqrt{26}$

$$|BC| = \sqrt{(x_3 - x_2)^2 + (y_3 - y_2)^2}$$

$$|BC| = \sqrt{(7 - 1)^2 + (-3 - 0)^2}$$

$$|BC| = \sqrt{(6)^2 + (-3)^2}$$

$$|BC| = \sqrt{36 + 9}$$

$$|BC| = \sqrt{45}$$

$$|BC| = \sqrt{9 \times 5}$$

$$|BC| = \sqrt{9} \times \sqrt{5}$$

$$|BC| = 3\sqrt{5}$$

Also distance of \overline{AC} :

$$\begin{split} |AC| &= \sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2} \\ |AC| &= \sqrt{\left(7 - (-4)\right)^2 + \left(-3 - (-1)\right)^2} \\ |AC| &= \sqrt{(7 + 4)^2 + (-3 + 1)^2} \\ |AC| &= \sqrt{(11)^2 + (-2)^2} \\ |AC| &= \sqrt{121 + 4} \\ |AC| &= \sqrt{125} \\ |AC| &= \sqrt{25 \times 5} \\ |AC| &= \sqrt{25} \times \sqrt{5} \\ |AC| &= 5\sqrt{5} \end{split}$$

For Scalene Triangle

All the three sides of a triangle are different.

$$|AB| \neq |BC| \neq |AC|$$

 $\sqrt{26} \neq 3\sqrt{5} \neq 5\sqrt{5}$

Thus, the points A, B and C are the vertices of scalene triangle.

Ex # 9.2

Prove that A(-2, -2), B(4, -2), C(4, 6) are **O5**: vertices of right - angled triangle.

Solution:

$$A(-2,-2), B(4,-2), C(4,6)$$
 Let $x_1=-2, \ y_1=-2$ And $x_2=4, \ y_2=-2$ Also $x_3=4, \ y_3=6$

As distance of \overline{AB} :

$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$|AB| = \sqrt{(4 - (-2))^2 + (-2 - (-2))^2}$$

$$|AB| = \sqrt{(4 + 2)^2 + (-2 + 2)^2}$$

$$|AB| = \sqrt{(6)^2 + (0)^2}$$

$$|AB| = \sqrt{36 + 0}$$

$$|AB| = \sqrt{36}$$

$$|AB| = 6$$

Now distance of \overline{BC} :

$$|BC| = \sqrt{(x_3 - x_2)^2 + (y_3 - y_2)^2}$$

$$|BC| = \sqrt{(4 - 4)^2 + (6 - (-2))^2}$$

$$|BC| = \sqrt{(0)^2 + (6 + 2)^2}$$

$$|BC| = \sqrt{0 + (8)^2}$$

$$|BC| = \sqrt{64}$$

$$|BC| = 8$$

Also distance of \overline{AC} :

$$|AC| = \sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}$$

$$|AC| = \sqrt{(4 - (-2))^2 + (6 - (-2))^2}$$

$$|AC| = \sqrt{(4 + 2)^2 + (6 + 2)^2}$$

$$|AC| = \sqrt{(6)^2 + (8)^2}$$

$$|AC| = \sqrt{36 + 64}$$

$$|AC| = \sqrt{100}$$

$$|AC| = 10$$
For Right angled Triangle

For Right angled Triangle

$$(Base)^{2} + (Prep)^{2} = (Hyp)^{2}$$
So
$$|AB|^{2} + |BC|^{2} = |AC|^{2}$$

$$(6)^{2} + (8)^{2} = (10)^{2}$$

$$36 + 64 = 100$$

$$100 = 100$$

Thus, the points A, B and C are the vertices of right – angled triangle.

Ex # 9.2

Q6: Prove that A(-2,0), B(6,0), C(6,6), D(-2,6)are vertices of a rectangle.

Solution:

$$A(-2,0), B(6,0), C(6,6), D(-2,6)$$

Let
$$x_1 = -2$$
, $y_1 = 0$

And
$$x_2 = 6$$
, $y_2 = 0$

Also
$$x_3 = 6$$
, $y_3 = 6$

Also
$$x_4 = -2$$
, $y_4 = 6$

As distance of \overline{AB} :

$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$|AB| = \sqrt{(6 - (-2))^2 + (0 - 0)^2}$$

$$|AB| = \sqrt{(6+2)^2 + (0)^2}$$

$$|AB| = \sqrt{(8)^2 + 0}$$

$$|AB| = \sqrt{64}$$

$$|AB| = 8$$

Now distance of \overline{BC} :

$$|BC| = \sqrt{(x_3 - x_2)^2 + (y_3 - y_2)^2}$$

$$|BC| = \sqrt{(6-6)^2 + (6-0)^2}$$

$$|BC| = \sqrt{(0)^2 + (6)^2}$$

$$|BC| = \sqrt{0 + (6)^2}$$

$$|BC| = \sqrt{36}$$

$$|BC| = 6$$

Also distance of \overline{CD} :

$$|CD| = \sqrt{(x_4 - x_3)^2 + (y_4 - y_3)^2}$$

$$|CD| = \sqrt{(-2-6)^2 + (6-6)^2}$$

$$|CD| = \sqrt{(-8)^2 + (0)^2}$$

$$|CD| = \sqrt{64 + 0}$$

$$|CD| = \sqrt{64}$$

$$|CD| = 8$$

Also distance of AD:

$$|AD| = \sqrt{(x_4 - x_1)^2 + (y_4 - y_1)^2}$$

$$|AD| = \sqrt{(-2 - (-2))^2 + (6 - 0)^2}$$

$$|AD| = \sqrt{(-2+2)^2 + (6)^2}$$

$$|AD| = \sqrt{(0)^2 + 36}$$

$$|AD| = \sqrt{0 + 36}$$

$$|AD| = \sqrt{36}$$

$$|AD| = 6$$

Now to find its Diagonal

Diagonal \overline{AC} :

$$|AC| = \sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}$$

$$|AC| = \sqrt{(6 - (-2))^2 + (6 - 0)^2}$$

$$|AC| = \sqrt{(6+2)^2 + (6)^2}$$

$$|AC| = \sqrt{(8)^2 + 36}$$

$$|AC| = \sqrt{64 + 36}$$

$$|AC| = \sqrt{100}$$

$$|AC| = 10$$

And Diagonal \overline{BD} :

$$|BD| = \sqrt{(x_4 - x_2)^2 + (y_4 - y_2)^2}$$

$$|BD| = \sqrt{(-2-6)^2 + (6-0)^2}$$

$$|BD| = \sqrt{(-8)^2 + (6)^2}$$

$$|BD| = \sqrt{64 + 36}$$

$$|BD| = \sqrt{100}$$

$$|BD| = 10$$

For Rectangle

Opposite sides are equal.

$$|AB| = |CD| = 8$$
 and $|BC| = |AD| = 6$

And also, diagonals are equal

$$|AC| = |BD| = 10$$

Thus, the points A, B, C and D are the vertices of Rectangle.

O7: The Vertices of the rectangle ABCD are A(2,0), B(5,0), C(5,4), D(2,4). How long is the diagonal AC?

Solution:

As to find diagonal AC, so take vertex A and C.

Diagonal AC:

Let
$$x_1 = 2$$
, $y_1 = 0$

And
$$x_2 = 5$$
, $y_2 = 4$

As distance of \overline{AC} :

$$|AC| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

 $|AC| = \sqrt{(5 - 2)^2 + (4 - 0)^2}$

$$|AC| = \sqrt{(5-2)^2 + (4-0)^2}$$

$$|AC| = \sqrt{(3)^2 + (4)^2}$$

$$|AC| = \sqrt{9 + 16}$$

$$|AC| = \sqrt{25}$$

$$|AC| = 5$$

Thus, diagonal AC = 5

O8:

Prove that

A(-4,-1), B(1,0), C(7,-3), D(2,-4) are vertices of a parallelogram.

Solution:

$$A(-4,-1), B(1,0), C(7,-3), D(2,-4)$$

Ex # 9.2

Let
$$x_1 = -4$$
, $y_1 = -1$

And
$$x_2 = 1$$
, $y_2 = 0$

Also
$$x_3 = 7$$
, $y_3 = -3$

Also
$$x_4 = 2$$
, $y_4 = -4$

As distance of \overline{AB} :

$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$|AB| = \sqrt{(1 - (-4))^2 + (0 - (-1))^2}$$

$$|AB| = \sqrt{(1+4)^2 + (0+1)^2}$$

$$|AB| = \sqrt{(5)^2 + (1)^2}$$

$$|AB| = \sqrt{25 + 1}$$

$$|AB| = \sqrt{26}$$

Now distance of \overline{BC} :

$$|BC| = \sqrt{(x_3 - x_2)^2 + (y_3 - y_2)^2}$$

 $|BC| = \sqrt{(7 - 1)^2 + (-3 - 0)^2}$

$$|BC| = \sqrt{(7-1)^2 + (-3-0)^2}$$

$$|BC| = \sqrt{(6)^2 + (-3)^2}$$

$$|BC| = \sqrt{36 + 9}$$

$$|BC| = \sqrt{45}$$

$$|BC| = \sqrt{9 \times 5}$$

$$|BC| = \sqrt{9} \times \sqrt{5}$$

$$|BC| = 3\sqrt{5}$$

Also distance of \overline{CD} :

$$|CD| = \sqrt{(x_4 - x_3)^2 + (y_4 - y_3)^2}$$

$$|CD| = \sqrt{(2-7)^2 + (-4-(-3))^2}$$

$$|CD| = \sqrt{(-5)^2 + (-4+3)^2}$$

$$|CD| = \sqrt{25 + (-1)^2}$$

$$|CD| = \sqrt{25 + 1}$$

$$|CD| = \sqrt{26}$$

Also distance of \overline{AD} :

$$|AD| = \sqrt{(x_4 - x_1)^2 + (y_4 - y_1)^2}$$

$$|AD| = \sqrt{(2 - (-4))^2 + (-4 - (-1))^2}$$

$$|AD| = \sqrt{(2+4)^2 + (-4+1)^2}$$

$$|AD| = \sqrt{(6)^2 + (-3)^2}$$

$$|AD| = \sqrt{(6)^2 + (-3)^2}$$

Ex # 9.2

$$|AD| = \sqrt{36 + 9}$$

$$|AD| = \sqrt{0 + 36}$$

$$|AD| = \sqrt{45}$$

$$|AD| = \sqrt{9 \times 5}$$

$$|AD| = \sqrt{9} \times \sqrt{5}$$

$$|AD| = 3\sqrt{5}$$

Now to find its Diagonal

Diagonal AC:

$$|AC| = \sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}$$

$$|AC| = \sqrt{(7 - (-4))^2 + (-3 - (-1))^2}$$

$$|AC| = \sqrt{(7+4)^2 + (-3+1)^2}$$

$$|AC| = \sqrt{(11)^2 + (-2)^2}$$

$$|AC| = \sqrt{121 + 4}$$

$$|AC| = \sqrt{125}$$

$$|AC| = \sqrt{25 \times 5}$$

$$|AC| = \sqrt{25} \times \sqrt{5}$$

$$|AC| = 5\sqrt{5}$$

And Diagonal \overline{BD} :

$$|BD| = \sqrt{(x_4 - x_2)^2 + (y_4 - y_2)^2}$$

$$|BD| = \sqrt{(2-1)^2 + (-4-0)^2}$$

$$|BD| = \sqrt{(1)^2 + (-4)^2}$$

$$|BD| = \sqrt{1 + 16}$$

$$|BD| = \sqrt{17}$$

For Parallelogram

Opposite sides are equal.

$$|AB| = |CD| = \sqrt{26}$$
 and $|BC| = |AD| = 3\sqrt{5}$

And also, diagonals are equal

$$|AC| \neq |BD|$$

$$5\sqrt{5} \neq \sqrt{17}$$

As diagonals are not equal

Thus, the points A, B, C and D are the vertices of Parallelogram.

Ex # 9.2

Q9: Find b such that the points A(2,b), B(5,5), C(-6,0) are vertices of a right-angled triangle with $\angle BAC = 90^{0}$

Solution:

$$A(2,b), B(5,5), C(-6,0)$$

Let
$$x_1 = 2$$
, $y_1 = b$

And
$$x_2 = 5$$
, $y_2 = 5$

Also
$$x_3 = -6$$
, $y_3 = 0$

As distance of \overline{AB} :

$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$|AB| = \sqrt{(5-2)^2 + (5-b)^2}$$

$$|AB| = \sqrt{(3)^2 + (5)^2 + (b)^2 - 2(5)(b)}$$

$$|AB| = \sqrt{9 + 25 + b^2 - 10b}$$

$$|AB| = \sqrt{34 + b^2 - 10b}$$

Now distance of \overline{BC} :

$$|BC| = \sqrt{(x_3 - x_2)^2 + (y_3 - y_2)^2}$$

$$|BC| = \sqrt{(-6-5)^2 + (0-5)^2}$$

$$|BC| = \sqrt{(-11)^2 + (-5)^2}$$

$$|BC| = \sqrt{121 + 25}$$

$$|BC| = \sqrt{146}$$

Also distance of \overline{AC} :

$$|AC| = \sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}$$

$$|AC| = \sqrt{(-6-2)^2 + (0-b)^2}$$

$$|AC| = \sqrt{(-8)^2 + (-b)^2}$$

$$|AC| = \sqrt{64 + b^2}$$

As
$$\angle BAC = 90^{\circ}$$

Now by Pythagoras theorem

$$(Base)^{2} + (Prep)^{2} = (Hyp)^{2}$$

$$|AB|^2 + |AC|^2 = |BC|^2$$

By putting values

$$\left(\sqrt{34+b^2-10b}\right)^2 + \left(\sqrt{64+b^2}\right)^2 = \left(\sqrt{146}\right)^2$$

$$34 + b^2 - 10b + 64 + b^2 = 146$$

$$b^2 + b^2 - 10b + 34 + 64 = 146$$

$$2b^2 - 10b + 98 = 146$$

$$2b^2 - 10b + 98 - 146 = 0$$

$$2b^2 - 10b - 48 = 0$$

$$2(b^2 - 5b - 24) = 0$$

Divided B.S by 2, we get

$$b^2 - 5b - 24 = 0$$

Ex # 9.2

$$b^2 + 3b - 8b - 24 = 0$$

$$b(b+3) - 8(b+3) = 0$$

$$(b+3)(b-8)=0$$

$$b + 3 = 0$$
 or $b - 8 = 0$

$$b = -3$$
 or $b = 8$

Q10: Given A(-4,-2), B(1,-3), C(3,1), find the coordinate of D in the 2^{nd} quadrant such that quadrilateral ABCD is a parallelogram.

Solution:

Let the coordinate D is (x, y)

Thus the vertices of a parallelogram are

$$A(-4,-2)$$
, $B(1,-3)$, $C(3,1)$, $D(x,y)$

As AC and BD are the diagonals

Now

Mid - point of AC =
$$\left(\frac{-4+3}{2}, \frac{-2+1}{2}\right)$$

$$Mid - point of AC = \left(\frac{-1}{2}, \frac{-1}{2}\right)$$

Also

Mid - point of BD =
$$\left(\frac{1+x}{2}, \frac{-3+y}{2}\right)$$

As diagonals of a parallelogram bisect each other

So

$$\frac{1+x}{2} = \frac{-1}{2}$$
 and $\frac{-3+y}{2} = \frac{-1}{2}$

$$1 + x = -1$$
 and $-3 + y = -1$

$$x = -1 - 1$$
 and $y = -1 + 3$

$$x = -2$$
 and $y = 2$

Thus

Thus the coordinate D is (-2, 2)

Mid – Point Formula:

The mid – point of the line segment obtained by joining two points $A(x_1\ ,\ y_1)$ and $B(x_2\ ,\ y_2)$

and C(x, y) is mid – point of AB, then

$$C(x,y) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Example # 14

Find the coordinates of mid – point of the segment joining the points A(4, 6) and B(2, 1) Solution:

Let C(x, y) is the mid – point of AB, then $C(x, y) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$

Put the values

$$C(x,y) = \left(\frac{4+2}{2}, \frac{6+1}{2}\right)$$

$$C(x,y) = \left(\frac{6}{2}, \frac{7}{2}\right)$$

$$C(x,y) = \left(3, \frac{7}{2}\right)$$

Example # 15

The coordinates of the mid – point of a line segment \overline{AB} are (2,5) and that of A are (-4,-6). Find the coordinates of point B. Solution:

Let the midpoint is C(2,5)

As one end of a line segment = $A(x_1, y_1) = A(-4, -6)$ And other end of a line segment = $B(x_2, y_2) = ?$

As midpoint formula is:

$$Midpoint = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Put the values

$$C(2,5) = \left(\frac{-4 + x_2}{2}, \frac{-6 + y_2}{2}\right)$$

Now by comparing

$$2 = \frac{-4 + x_2}{2} & 5 = \frac{-6 + y_2}{2}$$

$$2 \times 2 = -4 + x_2 & 5 \times 2 = -6 + y_2$$

$$4 = -4 + x_2 & 10 = -6 + y_2$$

$$4 + 4 = x_2 & 10 + 6 = y_2$$

$$8 = x_2 & 16 = y_2$$

$$x_2 = 8 & y_2 = 16$$

Thus the other end of a line segment = B(8, 16)

Unit #9

Ex # 9.3

Result #1

Prove that the line segment joining the mid – points of two sides of a triangle is equal to half of the length of the third side.

Proof:

$$A(0,0),B(a,0),C(b,c)$$

As D is the midpoint of

AC

$$D = \left(\frac{0+b}{2}, \frac{0+c}{2}\right)$$

$$D = \left(\frac{b}{2}, \frac{c}{2}\right)$$

Also E is the midpoint

of BC

$$E = \left(\frac{a+b}{2}, \frac{0+c}{2}\right)$$

$$E = \left(\frac{a+b}{2}, \frac{c}{2}\right)$$

Now to find the distance of \overline{AB}

$$|AB| = \sqrt{(a-0)^2 + (0-0)^2}$$

$$|AB| = \sqrt{(a)^2 + (0)^2}$$

$$|AB| = \sqrt{a^2}$$

$$|AB| = a$$

Now to find the distance of \overline{DE}

$$|DE| = \sqrt{\left(\frac{a+b}{2} - \frac{b}{2}\right)^2 + \left(\frac{c}{2} - \frac{c}{2}\right)^2}$$

$$|DE| = \sqrt{\left(\frac{a+b-b}{2}\right)^2 + (0)^2}$$

$$|DE| = \sqrt{\left(\frac{a}{2}\right)^2}$$

$$|DE| = \frac{a}{2}$$

But a = |AB|

$$|DE| = \frac{|AB|}{2}$$

$$|DE| = \frac{1}{2}|AB|$$

Result # 2

The mid – points of the hypotenuse of a right angled triangle is equidistance from the vertices.

Proof:

In right angled triangle ABC \overline{BC} is the hypotenouse and D is the mid — point The vertices are A(0,0), B(a,0), C(0,b) As D is the midpoint of BC

$$D = \left(\frac{a+0}{2}, \frac{0+b}{2}\right)$$

$$D = \left(\frac{a}{2}, \frac{b}{2}\right)$$

To Prove:

As mid – point D is equidistant from the vertices.

Thus
$$|AD| = |BD| = |CD|$$

Now to find the distance of \overline{AD}

$$|AD| = \sqrt{\left(\frac{a}{2} - 0\right)^2 + \left(\frac{b}{2} - 0\right)^2}$$

$$|AD| = \sqrt{\left(\frac{a}{2}\right)^2 + \left(\frac{b}{2}\right)^2}$$

$$|AD| = \sqrt{\frac{a^2}{4} + \frac{b^2}{4} \dots \dots equ(i)}$$

Now to find the distance of \overline{BD}

$$|BD| = \sqrt{\left(\frac{a}{2} - a\right)^2 + \left(\frac{b}{2} - 0\right)^2}$$

$$|BD| = \sqrt{\left(\frac{a - 2a}{2}\right)^2 + \left(\frac{b}{2}\right)^2}$$

$$|BD| = \sqrt{\left(\frac{-a}{2}\right)^2 + \frac{b^2}{4}}$$

$$|BD| = \sqrt{\frac{a^2 + b^2}{4}} \dots equ(ii)$$

Now to find the distance of \overline{CD}

$$|CD| = \sqrt{\left(\frac{a}{2} - 0\right)^2 + \left(\frac{b}{2} - b\right)^2}$$

$$|CD| = \sqrt{\left(\frac{a}{2}\right)^2 + \left(\frac{b - 2b}{2}\right)^2}$$

$$|CD| = \sqrt{\frac{a^2}{4} + \left(\frac{-b}{2}\right)^2}$$

$$|CD| = \sqrt{\frac{a^2}{4} + \frac{b^2}{4}}$$

$$|CD| = \sqrt{\frac{a^2 + b^2}{4} \dots equ(iii)}$$
From equ(i), (ii) & (iii)

|AD| = |BD| = |CD|

Result #3

Verify the diagonals of any rectangle are equal in length.

Proof:

In rectangle ABCD \overline{AC} and \overline{BD} are the diagonals The vertices are A(0,0), B(a,0), C(a,b), D(0,b)

To Prove:

As diagonals are equal in length

Thus
$$|AC| = |BD|$$

Now to find the distance of \overline{AC}

$$|AC| = \sqrt{(a-0)^2 + (b-0)^2}$$

$$|AC| = \sqrt{(a)^2 + (b)^2}$$

$$|AC| = \sqrt{a^2 + b^2} \dots equ(i)$$

Now to find the distance of \overline{BD}

$$|BD| = \sqrt{(0-a)^2 + (b-0)^2}$$

$$|BD| = \sqrt{(-a)^2 + (b)^2}$$

$$|BD| = \sqrt{a^2 + b^2} \dots equ(ii)$$

From equ(i), (ii)

$$|AC| = |BD|$$

Result #4

Show that diagonals of a parallelogram bisect each other.

In parallelogram ABCD \overline{AC} and \overline{BD} are

the diagonals

The vertices are A(0,0), B(a,0), C(b,c), D(b-a,c)

Let E is the midpoint of AC

$$E = \left(\frac{0+b}{2}, \frac{0+c}{2}\right)$$

$$E = \left(\frac{b}{2}, \frac{c}{2}\right)$$

Also F is the midpoint of BD

$$F = \left(\frac{a+b-a}{2}, \frac{0+c}{2}\right)$$

$$F = \left(\frac{b}{2}, \frac{c}{2}\right)$$

As the mid – points E and F

are same.

Thus

$$|AE| = |EC|$$
 and $|BF| = |FD|$

Result # 5 : Prove that is a right angled triangle square of the length of the hypotenuse is equal to the sum of the square of the length of two legs.

In right – angled triangle \overline{BC} hypotenuse

The vertices are A(0,0), B(a,0), C(0,b)

To prove:

$$(Hyp)^2 = (one \ leg)^2 + (other \ leg)^2$$

As distance of \overline{AB} :

$$|AB| = \sqrt{(a-0)^2 + (0-0)^2}$$

$$|AB| = \sqrt{(a)^2 + (0)^2}$$

$$|AB| = \sqrt{a^2}$$

$$|AB| = a$$

Now distance of BC:

$$|BC| = \sqrt{(0-a)^2 + (b-0)^2}$$

$$|BC| = \sqrt{(-a)^2 + (b)^2}$$

$$|BC| = \sqrt{a^2 + b^2}$$

Also distance of \overline{AC} :

$$|AC| = \sqrt{(0-0)^2 + (b-0)^2}$$

$$|AC| = \sqrt{(0)^2 + (b)^2}$$

$$|AC| = \sqrt{b^2}$$

$$|AC| = b$$

Let
$$\angle BAC = 90^{\circ}$$

$$(Hyp)^2 = (one \ leg)^2 + (other \ leg)^2$$

 $|BC|^2 = |AB|^2 + |AC|^2$

$$\left(\sqrt{a^2 + b^2}\right)^2 = (a)^2 + (b)^2$$
$$a^2 + b^2 = a^2 + b^2$$

Ex # 9.3

Page # 229

Q1: Find the coordinates of the midpoint of the segment with the given end points.

(i)
$$(8,-5)$$
 and $(-2,9)$

Solution:

$$(8, -5)$$
 and $(-2, 9)$

Let
$$x_1 = 8$$
, $y_1 = -5$

And
$$x_2 = -2$$
, $y_2 = 9$

As midpoint formula is:

$$Midpoint = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Put the values

$$\begin{aligned} & \text{Midpoint} = \left(\frac{8+(-2)}{2} , \frac{9+(-5)}{2}\right) \\ & \text{Midpoint} = \left(\frac{8-2}{2} , \frac{9-5}{2}\right) \end{aligned}$$

$$Midpoint = \left(\frac{8-2}{2}, \frac{9-5}{2}\right)$$

$$Midpoint = \left(\frac{6}{2}, \frac{4}{2}\right)$$

$$Midpoint = (3, 2)$$

(ii) (7,6)an $\overline{d(3,2)}$

Solution:

$$(7,6)$$
 and $(3,2)$

Let
$$x_1 = 7$$
, $y_1 = 6$

And
$$x_2 = 3$$
, $y_2 = 2$

As midpoint formula is:

$$Midpoint = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Put the values

$$Midpoint = \left(\frac{3+7}{2}, \frac{2+6}{2}\right)$$

Midpoint =
$$\left(\frac{10}{2}, \frac{8}{2}\right)$$

$$Midpoint = (5, 4)$$

(iii) (-2,3) and (-9,-6)

Solution:

$$(-2,3)$$
 and $(-9,-6)$

Let
$$x_1 = -2$$
, $y_1 = -3$

And
$$x_2 = -9$$
, $y_2 = -6$

As midpoint formula is:

$$Midpoint = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Put the values

Midpoint =
$$\left(\frac{-2 + (-9)}{2}, \frac{-3 + (-6)}{2}\right)$$

$$Midpoint = \left(\frac{-2-9}{2}, \frac{-3-6}{2}\right)$$

Midpoint =
$$\left(\frac{-11}{2}, \frac{-9}{2}\right)$$

(iv)
$$(a+b,a-b)$$
 and $(-a,b)$

Solution:

$$(a+b,a-b)$$
 and $(-a,b)$

Let
$$x_1 = a + b$$
, $y_1 = a - b$

And
$$x_2 = -a$$
, $y_2 = b$

As midpoint formula is:

$$Midpoint = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Put the values

$$Midpoint = \left(\frac{a+b+(-a)}{2}, \frac{a-b+b}{2}\right)$$

$$Midpoint = \left(\frac{a+b-a}{2}, \frac{a}{2}\right)$$

$$Midpoint = \left(\frac{a-a+b}{2}, \frac{a}{2}\right)$$

Midpoint =
$$\left(\frac{b}{2}, \frac{a}{2}\right)$$

Q2: The mid-point and one end of a line segment are (3, 7) and (4, 2) respectively. Find the other end point.

Solution:

Let the midpoint is C(3,7)

As one end of a line segment $= A(x_1, y_1) = A(4, 2)$ And other end of a line segment $= B(x_2, y_2) = ?$ As midpoint formula is:

Midpoint =
$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Ex # 9.3

Put the values

$$C(3,7) = \left(\frac{3+x_2}{2}, \frac{7+y_2}{2}\right)$$

Now by comparing

$$3 = \frac{4 + x_2}{2}$$
 & $7 = \frac{2 + y_2}{2}$

$$3 \times 2 = 4 + x_2$$
 & $7 \times 2 = 2 + y_2$

$$6 = 4 + x_2$$
 & $14 = 2 + y_2$

$$6 - 4 = x_2$$
 & $14 - 2 = y_2$

$$2 = x_2$$
 & $12 = y_2$

$$x_2 = 2$$
 & $y_2 = 12$

Thus the other end of a line segment = B(2, 12)

Q3: The midpoints of the sides of a triangle are (2, 5), (4, 2), (1, 1). Find the coordinates of the three vertices.

Solution:

As the midpoints are (2, 5), (4, 2), (1, 1)

Let the coordinates of the vertices are

$$A(x_1, y_1)$$
, $B(x_2, y_2)$ & $C(x_3, y_3)$

Let (2,5) be the midpoint of AB

$$(2,5) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Now by comparing

$$2 = \frac{x_1 + x_2}{2} \quad \& \quad 5 = \frac{y_1 + y_2}{2}$$

$$2 \times 2 = x_1 + x_2$$
 & $5 \times 2 = y_1 + y_2$

$$4 = x_1 + x_2$$
 & $10 = y_1 + y_2$

$$x_1 + x_2 = 4$$
 & $y_1 + y_2 = 10$

Let (4, 2) be the midpoint of BC

$$(4,2) = \left(\frac{x_2 + x_3}{2}, \frac{y_2 + y_3}{2}\right)$$

Now by comparing

$$4 = \frac{x_2 + x_3}{2} \quad \& \quad 2 = \frac{y_2 + y_3}{2}$$

$$4 \times 2 = x_2 + x_3$$
 & $2 \times 2 = y_2 + y_3$

$$8 = x_2 + x_3 \quad \& \quad 4 = y_2 + y_3$$

$$x_2 + x_3 = 8$$
 & $y_2 + y_3 = 4$

Let (1, 1) be the midpoint of AC

$$(1,1) = \left(\frac{x_1 + x_3}{2}, \frac{y_1 + y_3}{2}\right)$$

Now by comparing

$$1 = \frac{x_1 + x_3}{2} \quad \& \quad 1 = \frac{y_1 + y_3}{2}$$

$$1 \times 2 = x_1 + x_3$$
 & $1 \times 2 = y_1 + y_2$
 $2 = x_1 + x_2$ & $2 = y_1 + y_2$

Ex # 9.3

$$x_1 + x_3 = 2$$
 & $\overline{y_1 + y_3} = 2$

$$x_1 + x_2 = 4 \dots equ(i)$$

$$x_2 + x_3 = 8 \dots equ(ii)$$

$$x_1 + x_3 = 2 \dots equ(iii)$$

$$y_1 + y_2 = 10 \dots equ(a)$$

$$y_2 + y_3 = 4 \dots equ(b)$$

$$y_1 + y_3 = 2 \dots equ(c)$$

Now
$$equ(i) - equ(ii)$$

$$(x_1 + x_2) - (x_2 + x_3) = 4 - 8$$

$$x_1 + x_2 - x_2 - x_3 = -4$$

$$x_1 - x_3 = -4 \dots equ(iv)$$

Now equ(iii) + equ(iv)

$$x_1 + x_3 + x_1 - x_3 = 2 + (-4)$$

$$x_1 + x_1 = 2 - 4$$

$$2x_1 = -2$$

$$\frac{2x_1}{2} = \frac{-2}{2}$$

$$x_1 = -1$$

Put $x_1 = -1$ in equ(i)

$$-1+x_2=4$$

$$x_2 = 4 + 1$$

$$x_2 = 5$$

Put $x_2 = 5$ in equ(ii)

$$5 + x_3 = 8$$

$$x_3 = 8 - 5$$

$$x_3 = 3$$

Now equ(a) - equ(b)

$$(y_1 + y_2) - (y_2 + y_3) = 10 - 4$$

$$y_1 + y_2 - y_2 - y_3 = 6$$

$$y_1 - y_3 = 6 \dots equ(d)$$

Now equ(c) + equ(d)

$$y_1 + y_3 + y_1 - y_3 = 2 + 6$$

$$y_1 + y_1 = 8$$

$$2y_1 = 8$$

$$\frac{2y_1}{2} = \frac{8}{2}$$

$$y_1 = 4$$

Put $y_1 = 4$ in equ(a)

$$4 + y_2 = 10$$

$$y_2 = 10 - 4$$

$$y_2 = 6$$

Ex # 9.3

Put $y_2 = 6$ in equ(b)

$$6 + y_3 = 4$$

$$y_3 = 4 - 6$$

$$y_3 = -2$$

Let the coordinates of the vertices are

$$A(-1,4)$$
, $B(5,6) \& C(3,-2)$

Q4: The distance between two points with coordinates (1, 1) and (4, y) is 5.

Solution:

As the coordinates are (1, 1), (4, y)

And distance = d = 5

Let
$$x_1 = 1$$
, $y_1 = 1$

And
$$x_2 = 4$$
, $y_2 = y$

As distance formula is:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Put the values

$$5 = \sqrt{(4-1)^2 + (y-1)^2}$$

$$5 = \sqrt{(3)^2 + (y)^2 - 2(y)(1) + (1)^2}$$

$$5 = \sqrt{9 + y^2 - 2y + 1}$$

$$5 = \sqrt{y^2 - 2y + 1 + 9}$$

$$5 = \sqrt{y^2 - 2y + 10}$$
$$\sqrt{y^2 - 2y + 10} = 5$$

Taking square on B.S

$$\left(\sqrt{y^2 - 2y + 10}\right)^2 = (5)^2$$

$$v^2 - 2v + 10 = 25$$

$$v^2 - 2v + 10 - 25 = 0$$

$$v^2 - 2v - 15 = 0$$

$$y^2 + 3y - 5y - 15 = 0$$

$$y(y+3) - 5(y+3) = 0$$

$$(y+3)(y-5) = 0$$

$$y + 3 = 0$$
 or $y - 5 = 0$

$$y = -3$$
 or $y = 5$

Thus
$$y = -3$$
 or $y = 5$

Review Ex #9

Page # 231

Find the distance between A and B on the Q2: number line below.

Solution:

$$|AB| = |6 - (-4)|$$

$$|AB| = |6 + 4|$$

$$|AB| = |10|$$

$$|AB| = 10$$

Q3: What is the distance between two points with coordinates of (1, -5) and (-5, 7)?

Solution:

$$(1, -5)$$
 and $(-5, 7)$

Let
$$x_1 = 1$$
, $y_1 = -5$

And
$$x_2 = -5$$
, $y_2 = 7$

As distance formula is:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$d = \sqrt{(-5-1)^2 + \left(7 - (-5)\right)^2}$$

$$d = \sqrt{(-6)^2 + (7+5)^2}$$

$$d = \sqrt{36 + (12)^2}$$

$$d = \sqrt{36 + 144}$$

$$d = \sqrt{180}$$

$$d = \sqrt{36 \times 5}$$

$$d = \sqrt{36} \times \sqrt{5}$$

$$d=6\sqrt{5}$$

Using distance formula, show that the points O4:

(4,-3), B(2,0), C(-2,6) are collinear.

Solution:

$$(4,-3)$$
, $B(2,0)$, $C(-2,6)$

Let
$$x_1 = 4$$
, $y_1 = -3$

And
$$x_2 = 2$$
, $y_2 = 0$

Also
$$x_3 = -2$$
, $y_3 = 6$

As distance of \overline{AB} :

$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$|AB| = \sqrt{(2-4))^2 + (0-(-3))^2}$$

$$|AB| = \sqrt{(-2)^2 + (0+3)^2}$$

$$|AB| = \sqrt{4 + (3)^2}$$

$$|AB| = \sqrt{4+9}$$

$$|AB| = \sqrt{13}$$

Now distance of \overline{BC} :

$$|BC| = \sqrt{(x_3 - x_2)^2 + (y_3 - y_2)^2}$$

$$|BC| = \sqrt{(-2-2)^2 + (6-0)^2}$$

$$|BC| = \sqrt{(-4)^2 + (6)^2}$$

$$|BC| = \sqrt{16 + 36}$$

$$|BC| = \sqrt{52}$$

$$|BC| = \sqrt{4 \times 13}$$

$$|BC| = \sqrt{4} \times \sqrt{13}$$

$$|BC| = 2\sqrt{13}$$

Also distance of \overline{AC} :

$$|AC| = \sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}$$

$$|AC| = \sqrt{(-2-4)^2 + (6-(-3))^2}$$

$$|AC| = \sqrt{(-6)^2 + (6+3)^2}$$

$$|AC| = \sqrt{36 + (9)^2}$$

$$|AC| = \sqrt{36 + 81}$$

$$|AC| = \sqrt{117}$$

$$|AC| = \sqrt{9 \times 13}$$

$$|AC| = \sqrt{9} \times \sqrt{13}$$

$$|AC| = 3\sqrt{13}$$

For Colinear Points

$$|AC| = |AB| + |BC|$$

$$2\sqrt{74} = \sqrt{74} + \sqrt{74}$$

Thus, the points are colinear points.

O5: Find the point on the x - axis which is equidistant from (0,1) and (3,3).

Solution:

As the given points are A(0, 1) and B(3, 3)

Let P be the point on x - axis

So P(x,0)

As point P is equidistant from A and B

$$|AP| = |BP|$$

$$\sqrt{(x-0)^2 + (0-1)^2} = \sqrt{(x-3)^2 + (0-3)^2}$$

$$\sqrt{(x)^2 + (-1)^2} = \sqrt{x^2 - 2(x)(3) + (3)^2 + (-3)^2}$$

$$\sqrt{x^2 + 1} = \sqrt{x^2 - 6x + 9 + 9}$$
$$\sqrt{x^2 + 1} = \sqrt{x^2 - 6x + 18}$$

$$\sqrt{x^2 + 1} = \sqrt{x^2 - 6x + 18}$$

Review # 9

Taking square on B.S

$$\left(\sqrt{x^2 + 1}\right)^2 = \left(\sqrt{x^2 - 6x + 18}\right)^2$$

$$x^2 + 1 = x^2 - 6x + 18$$

$$x^2 - x^2 + 6x = 18 - 1$$

$$6x = 17$$

$$x = \frac{17}{12}$$

Thus, the point on x - axis is $\left(\frac{17}{6}, 0\right)$

Q6: A segment has one endpoint at (15, 22) and a midpoint at (5, 18), what are the coordinates of the other endpoint?

Solution:

Let the midpoint is C(5, 18)

As one end of a line segment = $A(x_1, y_1) = A(15, 22)$ And other end of a line segment = $B(x_2, y_2)$ =? As midpoint formula is:

$$Midpoint = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Put the values

$$C(5,18) = \left(\frac{15 + x_2}{2}, \frac{22 + y_2}{2}\right)$$

Now by comparing

$$5 = \frac{15 + x_2}{2} \quad & 18 = \frac{22 + y_2}{2}$$

$$5 \times 2 = 15 + x_2 \quad & 18 \times 2 = 22 + y_2$$

$$10 = 15 + x_2 \quad & 36 = 22 + y_2$$

$$10 - 15 = x_2 \quad & 36 - 22 = y_2$$

$$-5 = x_2 \quad & 14 = y_2$$

$$x_2 = -5 \quad & y_2 = 14$$

Thus the other end of a line segment = B(-5, 14)

Prove that (2, 1), (0, 0), (-1, 2), (1, 3) are Q7: vertices of a rectangle.

Solution:

Let
$$A(2, 1)$$
, $B(0, 0)$, $C(-1, 2)$, $D(1, 3)$
Let $x_1 = 2$, $y_1 = 1$
And $x_2 = 0$, $y_2 = 0$
Also $x_3 = -1$, $y_3 = 2$
Also $x_4 = 1$, $y_4 = 3$

Review # 9

As distance of \overline{AB} :

$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

 $|AB| = \sqrt{(0 - 2)^2 + (0 - 1)^2}$

$$|AB| = \sqrt{(-2)^2 + (-1)^2}$$

$$|AB| = \sqrt{4+1}$$

$$|AB| = \sqrt{5}$$

Now distance of \overline{BC} :

$$|BC| = \sqrt{(x_3 - x_2)^2 + (y_3 - y_2)^2}$$

$$|BC| = \sqrt{(-1-0)^2 + (2-0)^2}$$

$$|BC| = \sqrt{(-1)^2 + (2)^2}$$

$$|BC| = \sqrt{1+4}$$

$$|BC| = \sqrt{5}$$

Also distance of \overline{CD} :

$$|CD| = \sqrt{(x_4 - x_3)^2 + (y_4 - y_3)^2}$$

$$|CD| = \sqrt{(1 - (-1))^2 + (3 - 2)^2}$$

$$|CD| = \sqrt{(1+1)^2 + (1)^2}$$

$$|CD| = \sqrt{(2)^2 + 1}$$

$$|CD| = \sqrt{4+1}$$

$$|CD| = \sqrt{5}$$

Also distance of \overline{AD} :

$$|AD| = \sqrt{(x_4 - x_1)^2 + (y_4 - y_1)^2}$$

$$|AD| = \sqrt{(1-2)^2 + (3-1)^2}$$

$$|AD| = \sqrt{(-1)^2 + (2)^2}$$

$$|AD| = \sqrt{1+4}$$

$$|AD| = \sqrt{5}$$

Now to find its Diagonal

Diagonal \overline{AC} :

$$|AC| = \sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}$$

$$|AC| = \sqrt{(-1-2)^2 + (2-1)^2}$$

$$|AC| = \sqrt{(-3)^2 + (1)^2}$$

$$|AC| = \sqrt{9+1}$$

$$|AC| = \sqrt{10}$$

And Diagonal \overline{BD} :

$$|BD| = \sqrt{(x_4 - x_2)^2 + (y_4 - y_2)^2}$$

 $|BD| = \sqrt{(1 - 0)^2 + (3 - 0)^2}$

$$|BD| = \sqrt{(1-0)^2 + (3-0)^2}$$

$$|BD| = \sqrt{(1)^2 + (3)^2}$$

$$|BD| = \sqrt{1+9}$$

$$|BD| = \sqrt{10}$$

Review #9

For Rectangle

Opposite sides are equal.

$$|AB| = |CD| = \sqrt{5}$$
 and $|BC| = |AD| = \sqrt{5}$

And also, diagonals are equal

$$|AC| = |BD| = \sqrt{10}$$

Thus, the points A, B, C and D are the vertices of Rectangle.

Also

$$|AB| = |BC| = |CD| = |AD| = \sqrt{5}$$

So it is also a square

Q8: Prove that A(-1,0), B(3,3), C(6,-1),

D(2, -4) are vertices of a square.

Solution:

$$A(-1,0), B(3,3), C(6,-1), D(2,-4)$$

Let
$$x_1 = -1$$
, $y_1 = 0$

And
$$x_2 = 3$$
, $y_2 = 3$

Also
$$x_3 = 6$$
, $y_3 = -1$

Also
$$x_4 = 2$$
, $y_4 = -4$

As distance of \overline{AB} :

$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$|AB| = \sqrt{(3-(-1))^2 + (3-0)^2}$$

$$|AB| = \sqrt{(3+1)^2 + (3)^2}$$

$$|AB| = \sqrt{(4)^2 + 9}$$

$$|AB| = \sqrt{16 + 9}$$

$$|AB| = \sqrt{25}$$

$$|AB| = 5$$

Now distance of \overline{BC} :

$$|BC| = \sqrt{(x_3 - x_2)^2 + (y_3 - y_2)^2}$$

$$|BC| = \sqrt{(6-3)^2 + (-1-3)^2}$$

$$|BC| = \sqrt{(3)^2 + (-4)^2}$$

$$|BC| = \sqrt{9 + 16}$$

$$|BC| = \sqrt{25}$$

$$|BC| = 5$$

Also distance of \overline{CD} :

$$|CD| = \sqrt{(x_4 - x_3)^2 + (y_4 - y_3)^2}$$

$$|CD| = \sqrt{(2-6)^2 + (-4-(-1))^2}$$

$$|CD| = \sqrt{(-4)^2 + (-4+1)^2}$$

$$|CD| = \sqrt{16 + (-3)^2}$$

Review # 9

$$|CD| = \sqrt{16 + 9}$$

$$|CD| = \sqrt{25}$$

$$|CD| = 5$$

Also distance of \overline{AD} :

$$|AD| = \sqrt{(x_4 - x_1)^2 + (y_4 - y_1)^2}$$

$$|AD| = \sqrt{(2 - (-1))^2 + (-4 - 0)^2}$$

$$|AD| = \sqrt{(2+1)^2 + (-4)^2}$$

$$|AD| = \sqrt{(3)^2 + (4)^2}$$

$$|AD| = \sqrt{9 + 16}$$

$$|AD| = \sqrt{25}$$

$$|AD| = 5$$

Now to find its Diagonal

Diagonal \overline{AC} :

$$|AC| = \sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}$$

$$|AC| = \sqrt{(6 - (-1))^2 + (-1 - 0)^2}$$

$$|AC| = \sqrt{(6+1)^2 + (-1)^2}$$

$$|AC| = \sqrt{(7)^2 + 1}$$

$$|AC| = \sqrt{49 + 1}$$

$$|AC| = \sqrt{50}$$

$$|AC| = \sqrt{25 \times 2}$$

$$|AC| = \sqrt{25} \times \sqrt{2}$$

$$|AC| = 5\sqrt{2}$$

And Diagonal \overline{BD} :

$$|BD| = \sqrt{(x_4 - x_2)^2 + (y_4 - y_2)^2}$$

$$|BD| = \sqrt{(2-3)^2 + (-4-3)^2}$$

$$|BD| = \sqrt{(-1)^2 + (-7)^2}$$

$$|BD| = \sqrt{1 + 49}$$

$$|BD| = \sqrt{50}$$

$$|BD| = \sqrt{25 \times 2}$$

$$|BD| = \sqrt{25} \times \sqrt{2}$$

$$|BD| = 5\sqrt{2}$$

For Square

All the sides are equal.

$$|AB| = |BC| = |CD| = |AD| = 5$$

And also, diagonals are equal

$$|AC| = |BD| = 5\sqrt{2}$$

Thus, the points A, B, C and D are the vertices of Square.

Review #9

Q9: Show that (6,5), (2,-4), and (5,-1) is an isosceles triangle.

Solution:

Let
$$A(6,5)$$
, $B(2,-4)$, $C(5,-1)$

Let
$$x_1 = 6$$
, $y_1 = 5$

And
$$x_2 = 2$$
, $y_2 = -4$

Also
$$x_3 = 5$$
, $y_3 = -1$

As distance of \overline{AB} :

$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$|AB| = \sqrt{(2-6)^2 + (-4-5)^2}$$

$$|AB| = \sqrt{(-4)^2 + (-9)^2}$$

$$|AB| = \sqrt{16 + 81}$$

$$|AB| = \sqrt{97}$$

Now distance of \overline{BC} :

$$|BC| = \sqrt{(x_3 - x_2)^2 + (y_3 - y_2)^2}$$

$$|BC| = \sqrt{(5-2)^2 + (-1-(-4))^2}$$

$$|BC| = \sqrt{(-3)^2 + (-1+4)^2}$$

$$|BC| = \sqrt{9 + (3)^2}$$

$$|BC| = \sqrt{9+9}$$

$$|BC| = \sqrt{18}$$

$$|BC| = \sqrt{9 \times 2}$$

$$|BC| = \sqrt{9} \times \sqrt{2}$$

$$|BC| = 3\sqrt{2}$$

Also distance of \overline{AC} :

$$|AC| = \sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}$$

$$|AC| = \sqrt{(5-6)^2 + (-1-5)^2}$$

$$|AC| = \sqrt{(-1)^2 + (-6)^2}$$

$$|AC| = \sqrt{1 + 36}$$

$$|AC| = \sqrt{37}$$

Here

$$|AB| \neq |BC| \neq |CD| \neq |AD|$$

So these are not the vertices of an isosceles triangle.

Review #9

Activity

You have a quadrilateral with vertices A(0, 0), B(9, 0), C(2, 4), D(6, 4). Find the mid – points of their diagonals. Does diagonals cut at the midpoint. Show it on graph paper.

Solution:

Let
$$x_1 = 0$$
,

$$y_1 = 0$$

And
$$x_2 = 9$$
,

$$y_2 = 0$$

Also
$$x_3 = 2$$
,

$$y_3 = 4$$

Also
$$x_4 = 6$$
, $y_4 = 4$

Here the diagonals are AD and BC

Now

Midpoint of AD =
$$\left(\frac{x_1 + x_4}{2}, \frac{y_1 + y_4}{2}\right)$$

Put the values

Midpoint of AD =
$$\left(\frac{0+6}{2}, \frac{0+4}{2}\right)$$

Midpoint of AD =
$$\left(\frac{6}{2}, \frac{4}{2}\right)$$

Midpoint of
$$AD = (3, 2)$$

Midpoint of BC =
$$\left(\frac{x_2 + x_3}{2}, \frac{y_2 + y_3}{2}\right)$$

Put the values

Midpoint of BC =
$$\left(\frac{9+2}{2}, \frac{0+4}{2}\right)$$

$$Midpoint of BC = \left(\frac{11}{2}, \frac{4}{2}\right)$$

Midpoint of
$$BC = (5.5, 2)$$

As the mid – points of diagonals are not same. So, the diagonals do not cut at mid – point.